
We humans are sure that we are the most intel-
ligent species on Earth, though sometimes our
behavior may suggest another point of view. It
is clear that not all of us think in quite the same
way, and some of us think a little bit better than
others. I want to explore just what this means.

The modern study of intelligence began
about 100 years ago, when Sir Francis Galton
called attention to the fact of individual differ-
ences in a variety of cognitive tasks. Galton
emphasized what we would today call low-level
cognitive tasks, such as simple reaction time.
Then Binet utterly ignored Galton’s methods
of measurement in order to begin an intelli-
gence testing program that met an applied
need, screening students in public schools. This
split became a tradition. For more than half a

century the test developers, the psychometricians,
and the laboratory-based experimental psycho-
logists virtually ignored each other. From time
to time people said we should get together,
because after all we were studying the same
human mind (Cronbach, 1957), but little was
done until the early 1970s, when my own labor-
atory, and somewhat later Robert Sternberg
(1977) and Benton Underwood (Underwood,
Boruch, & Malmi, 1978), published empirical
work uniting the laboratory and the testing
center. Shortly after, the journal Intelligence
was founded. Today, its articles regularly com-
bine cognitive psychology and psychometric
approaches. Work has prospered for about a
quarter of a century, so it is time to stop and see
where we are.
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The modern psychometric view

Since psychometric tests are the popular defini-
tion of intelligence, let us begin with them. The
first question to ask is not “How are the tests
constructed?” but rather “Do the tests measure
anything that matters?” The correlation be-
tween intelligence test scores and academic
performance is between .3 and .5, depending
on whether or not you wish to discuss observed
correlations or population estimates based upon
extrapolations from the observed statistics
(Hunt, 1995). Similar correlations are found
between test performance and performance in
military and industrial training programs
(Earles & Ree, 1992). What is less widely real-
ized is that the tests predict industrial as well 
as academic performance (Hunter, 1986), pro-
viding that you are looking at the cognitive 
and not the social aspects of how people do
their jobs. The distinction makes a difference.
Figure 1 presents the results of a study by the
U.S. Army, which found that intelligence test
scores predict the technical aspects of job per-
formance quite well, but are poor predictors of
motivation.

Every measuring device implies a theory 
of the thing being measured. The best-known
psychometric theory is Spearman’s notion of
general intelligence (Spearman, 1927). Spearman
believed that performance on any intellectual

task was determined by a person’s general 
intelligence, g, augmented by a variety of
special intelligences that were unique to specific
testing procedures. While some people still
accept Spearman’s theory (e.g., Herrnstein &
Murray, 1994), many psychometricians believe
that individual differences in mental abilities
are too complex to be represented by a single
dimension. This position, which today is
vigorously championed by Howard Gardner
(1983), was first put forward by Leon
Thurstone (1938).

In the 1930s Thurstone developed a theory
of intelligence in which people were described
by their coordinates in an intellectual space
whose dimensions were such things as verbal
comprehension and arithmetic facility. Thurstone
argued that rather than being just one thing,
intelligence was composed of 8 to 12 separate
abilities. Subsequently, more than 100 dimen-
sions were proposed (Guilford, 1967). R. J.
Sternberg (1990) has aptly called such theories
of intelligence a geographic metaphor for the
mind, albeit using a far more complicated geo-
graphy than our trivial three-dimensional globe.

Now let us consider a third type of theory,
hierarchical theories, such as those proposed by
Horn, Cattell, and (somewhat earlier) Philip
Vernon (Cattell, 1971; Horn, 1985; Horn &
Noll, 1994). These theories are a compromise
between Spearman’s notion of general intel-
ligence and the multiple intelligence ideas of
Gardner, Guilford, and Thurstone. Horn and
Cattell maintain that general intelligence con-
sists of two correlated dimensions, fluid intel-
ligence (Gf) and crystallized intelligence (Gc).
In addition, they acknowledge a third dimen-
sion of ability, spatial-visual reasoning (Gv),
which is statistically almost independent of Gf
and Gc. Loosely, fluid intelligence is the ability
to figure out ways of attacking novel problems,
crystallized intelligence is the ability to apply
previously learned solution methods to the
problem you are currently facing, and spatial-
visual reasoning is just what it says it is, the
ability to reason about images and locations in
space. There is more to the theory, but this brief
summary is enough detail for our present
purpose.
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Figure 1. The estimated relationship between
Armed Services Vocational Aptitude Bat-
tery (ASVAB) components and various
dimensions job performance amongst
U.S. Army enlisted personnel (McHenry,
Hough, Toguam, Hanson, & Ashworth,
1990).



Using statistical techniques that were not
available to the early test developers, John
Carroll (1993) conducted a massive analysis of
many of the most important data sets on which
our theories are based. He compared the differ-
ent theories using standard analytic methods
on the same evidence. Carroll found that the
hierarchical model was the best for virtually all
the data. To repeat, the basic distinction in the
“winning” hierarchical theory is between the
ability to solve new problems, the ability to apply
old solutions to current problems, and the ability
to use visual imagery and spatial reasoning. I
will assume this distinction for the remainder of
this paper. However, I want to qualify Carroll’s
conclusions in an important way, by consider-
ing some data that were outside of his survey.

All psychometric theories carry with them
the implicit assumption that the relation be-
tween different types of intelligence are the
same at the top and the bottom of the intel-
lectual spectrum. However, this assumption 
is not true. Spearman’s general intelligence
theory may be a good description of individual
differences at the lower end of the intellectual
range, while the differentiated Horn-Cattell
model is appropriate at the upper ends.

The best evidence for this claim is a study 
by Detterman and Daniel (1989) of the sample
used to validate the Wechsler Adult Intelli-
gence Scale-revised (WAIS-R). Detterman and
Daniel first split this large data set into sub-
groups consisting of the quintiles of scores 
on just one of the subtests. They then com-
puted the mean correlation between each pair
of other subtests within each quintile. If the
assumption of unchanging factor structure is
correct, the correlations should be lowest in the
mid-quintile, and then should increase sym-
metrically as we move outward, to the quintiles
either above or below the mid-quintile. The
reason is that the range of scores in the outer-
most deciles is greater than the range of scores
in the deciles in the mid-ranges. But this is not
what happened. The data are displayed in 
Figure 2. As can clearly be seen, the change 
in correlations is not symmetrical. Subtest cor-
relations are high at the low end and low at the
high end of ability.

This finding is not unique to the WAIS.
Figure 3 shows a similar analysis that Derek
Chung and I made of the intelligence test
scores available for the National Longitudinal
Study of Youth, a large, carefully constructed
population of the younger American work-
force. The similarity between our results and
Detterman and Daniel’s is striking.

To summarize, psychometric theory began
with the implicit assumption that there is a
single, pervasive trait of general intelligence,
and that it mattered both in academia and in
the workplace. After about a century of debate,
the following picture has emerged:

1. Intelligence is one of the most important
factors determining academic and workplace
performance. Clearly, no one factor deter-
mines success in human endeavors. How-
ever, intelligence cannot be ignored.

2. The concept of general intelligence has to be
split into three separate general abilities;
fluid, crystallized, and visual-spatial intelli-
gence. Fluid and crystallized intelligence are
at least moderately correlated.

3. While high-level abilities appear to be differ-
entiated, low-level abilities, or lack of intelli-
gence, is general.

The status of the concept of intelligence 3
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Figure 2. Average intercorrelation between sub-
tests of the WAIS as a function deciles
of scores of other subtests of the WAIS,
which were removed from the correla-
tion matrix. From Detterman and Daniel,
1989.
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A cognitive psychology view 
of individual difference

Now let us look at intelligence from the per-
spective of a cognitive psychologist. Theories in
cognitive psychology begin with a commitment
to some principles about how the mind pro-
cesses information in general, without concern
for the semantic content of the information
being processed. Using an analogy with the
design of computers, this will be called the
system architecture level of cognitive theory.
Most cognitive psychology theories today are
based on the “blackboard” system architecture
shown in Figure 4. Memory is divided into two
broad classes: immediate memory and long-
term memory. The role of immediate memory
is to provide a workspace representing what the
thinker is attending to at the moment. Long-
term memory is the repository for information
acquired in the past. Such information falls 
into two broad classes: declarative information,
about facts, and procedural information, about

how to do things. To illustrate, my knowledge
that I was in Seattle yesterday morning is
declarative information, while my knowledge
of how to drive a car or solve a set of linear
equations is procedural information. Proced-
ural information is very important. According
to the blackboard model, individual acts of
thinking are driven by pattern recognition.
Much of our memory consists of rules for
behavior and the circumstances in which we
should use them.

An architectural-level theory describes a
potential for thought, just as a computer, as 
a physical device, establishes a potential for
computation. Theories of thinking about some-
thing (e.g., theories of chess playing, language
comprehension, or mathematical theorem prov-
ing) augment the architectural-level theory with
a representational-level theory that specifies
what knowledge the individual has and how
that knowledge is used. Clever memorization
can greatly augment the information process-
ing capacity provided by our brains. A classic
example is provided by short-term memory.
Many years ago Miller (1956) noted that our
memory for repeating letters is quite short.
Given a random letter string we can repeat
back at most eight or nine letters. However, if
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Figure 3. Average intercorrelation between sub-
tests of the ASVAB, as a function of
deciles of scores on the word know-
ledge subtest. Computations based on
the National Labor Survey of Youth
(NLSY) data bank. The computations
were carried out for this article by Earl
Hunt and Derek Chung.

Figure 4. The Blackboard Model of human in-
formation processing. Working memory
contains a representation of the prob-
lem before us. This representation is
acted upon by declarative and proced-
ural information in long-term memory.
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the letters are organized into a code that is
meaningful to us, as in:

JAPAN WINS OLYMPIC VOLLEYBALL
GAME FROM USA

we do much better. At a more complex level,
school children learn how to apply the Pythag-
orean theorem to solve problems in geometry.
Much later they learn to use linear regression
analysis in algebra. These are schema that, once
learned, permit us to organize our problem-
solving efforts in ways that apply our mental
architecture in an efficient manner. In order 
to understand a person’s thinking you must
understand the capabilities that that person has
for processing information in general, which
are provided by the system architecture, and
you must understand the schema and chunking
procedures that the individual uses to organize
information about a particular topic. Where
are the individual differences in this scheme?

During thinking our brains must ship in-
formation around from one center of neural
activity to another. This does not mean that we
have wires inside our head, analogous to wires
inside a computer, but it does mean that the
mind must contain channels of communication
between different centers of mental action.
Since the brain supports the mind, the brain
must contain information-processing channels
that move signals from one site of brain action
to another. Jensen (1987) has argued that indi-
vidual differences in neural channel capacity,
speed, and reliability are important contributors
to individual differences in intelligence, and
that such differences can be revealed by study-
ing the speed and accuracy with which people
make very simple choices.

There is a good bit of evidence supporting
this idea. The correlation between intelligence
test scores and the time required to make
simple choices, such as the choice reaction time
(CRT) paradigms is about .3 (Jensen, 1987;
Palmer, MacLeod, Hunt, & Davidson, 1985;
Vernon, 1983; Vernon & Kantor, 1986). Very
much the same point has been made in inspec-
tion time (IT) studies, in which people must
make judgments about very rapidly presented

visual displays. In general, people with high
intelligence test scores extract information
from visual displays more rapidly than people
with low scores.

It is clear that one of the major individual
differences in intelligence is the sheer speed
with which people can make simple decisions.
Interestingly, one of the best-documented find-
ings in geriatrics is a progressive slowing of
performance on virtually all information pro-
cessing tasks as a function of aging. This slow-
ing can be explained by a simple model that
assumes that as we age our neural information-
processing channels simply become less reliable
(Cerella, 1990; Myerson, Hale, Wagstaff, Poon,
& Smith, 1990). There is a temptation to think
that this may account for the equally well docu-
mented age-related drop in fluid intelligence
(Horn, 1985). While this may be so, further
exploration is required. Many phenomena that
are linked with age (e.g., loss of hair in males)
have nothing to do with declines in intelligence.

The point about aging can be generalized.
Information processing speed cannot explain
all the relationships between information pro-
cessing and intelligence, because the relation-
ships increase as the information processing
tasks become more complex (Vernon & Kantor,
1986). In fact, partialling out CRT scores 
does not markedly influence the relationship
between reading and intelligence test measures
(Palmer et al., 1985). A closer look at the rela-
tionship between intelligence and information
processing measures is in order.

Thinking involves the manipulation of a
mental representation held in immediate mem-
ory. Therefore we ought to find that measures
of the performance of the immediate memory
system are related to measures of complex
thinking. Indeed, they are.

One of the best-known paradigms in in-
formation processing psychology is the short-
term memory scanning task developed by 
S. Sternberg (1966). In this task people are
shown a memory set of between one and six
items, and then immediately asked if a probe
item was a member of the memory set. The
time to respond to the probe rises linearly with
the number of times in the memory set, so the
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slope of the function (the scanning rate) is taken
as a measure of speed of access to information
in immediate memory. In one of our initial
studies (Hunt, Frost, & Lunneborg, 1973) we
found that college students who have high
scores on mathematical aptitude tests tend 
to be rapid scanners. However, for a variety 
of reasons, we failed to follow up this find-
ing. That was our misfortune. Subsequently, 
S. Sternberg (1975) reported that the slope
varies systematically in widely defined popu-
lations, from 40 ms per item in college students
to over 100 ms in elderly adults and some
patient groups. Meanwhile we had found that
scanning rates could be varied by the use of
barbiturate drugs, which subjectively often
leave people feeling dull (MacLeod, Dekaban,
& Hunt, 1978). However, to my chagrin, we did
not follow up this line of investigation.

Others did. Daneman and Carpenter (1980,
1983) developed a way of measuring a person’s
reading span, the extent to which people can
hold extraneous information in immediate
memory while processing sentences. They and
their colleagues have since shown that reading
span size is correlated with performance in a
host of tasks that require fairly complicated
linguistic reasoning. Patrick Kyllonen and
Raymond Christal (1990) extended these re-
sults by showing that individual differences in
complex reasoning tasks, such as the analysis of
electronic circuits, can be almost entirely ac-
counted for by individual differences in work-
ing memory. Taking these results together, it
appears that reasoning tasks of the sort usually
described as “requiring fluid intelligence” are
almost exactly those that require fairly large
immediate memory capacities.

Now let us shift our attention from para-
meters related to the active processing of
information to parameters related to the pro-
cess of extracting information from long-term
memory. This process is essential for thought,
because most human thought is guided by the
retrieval of previously acquired information
and procedures. A particularly apt example is
reading, which is an essential cognitive skill 
in modern society. Rapid readers must make
sight–meaning correspondences within a few

milliseconds. In English, for instance, the good
reader must associate the arbitrary letter se-
quence CAT with the concept of “small, furry,
domestic animal.” Lexical entries must be
distinguished from nonlexical ones, such as
CAK, which is not a word in English although
it does obey English language orthographic
and phonetic conventions. Recognition must
be invariant over some scripts, but at the same
time be sensitive to small changes in the visual
stimulus. A, a, and a all refer to the same letter
but b and d are different.

During the 1970s and 1980s my colleagues
and I (Hunt et al., 1973; Hunt, Lunneborg, &
Lewis, 1975; Hunt, Davidson, & Lansman, 1981;
Palmer et al., 1985; see also Bell & Perfetti,
1994) showed that there is a moderate correla-
tion (r in the .3 and .4 range) between the
speed with which people can do a simple
recognition task and the accuracy with which
they can perform much more complicated lin-
guistic tasks, such as paragraph comprehension.
Memory counts, which is not surprising. But
there is more, for these findings open the door
to a consideration of the different ways in
which memory counts.

In reading, the cues to word identification
are closely linked to the physical nature of the
stimuli. English readers recognize CAT, CAT,
and, with slightly more difficulty, CAT, as
permissible distortions of our prototype of the
written word “cat.” The ability to make direct
recognitions of this sort is certainly important
in thought. However, much of our more
complicated thinking depends upon making 
an indirect connection between the present
situation and past knowledge, by linking them
both to an abstract situation. For instance,
school children do not learn how to count dogs,
cats and marbles. They learn arithmetic schema
that let them do simple counting problems
about anything (Kintsch & Greeno, 1985). The
same principle applies to adult reasoning.
Physicists use concepts like “balance of forces”
and statisticians use concepts like “independ-
ent groups designs” as ready-made templates
to guide problem solving (Larkin, 1983).
Students learning physics do the same thing,
except that their schema are neither as well
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organized nor as close to the laws of physics 
as their instructors might like (di Sessa, 1993;
Hunt & Minstrell, 1994). The use of schema 
is by no means limited to mathematics and 
the sciences. Criminal judges determine their
sentencing decisions by deciding whether the
case at hand represents a situation where society
needs protection, a criminal needs punish-
ment, or an unfortunate individual needs 
help (Lawrence, 1986). The intelligent expert,
magistrate or mathematician has developed
procedures that facilitate transfer from a par-
ticular case into a schema, and then back out
from a schema into a case-specific solution.
Humans develop expertise in various fields by
developing the schema that are appropriate to
the life they live.

We acquire most of our schema by experi-
ence with specific situations. Therefore how a
person codes his/her experiences will determine
what is learned from them. If an experience is
coded in terms of general principles, then the
experience can be used to solve future prob-
lems, providing that the future problem is also
coded in the same way. There are very wide
individual differences in the facility with which
people do this, a point that has been docu-
mented in the literature. In fact, some of the
greatest failures in intelligent processing seem
to be associated with people’s failure to realize
that they have information relevant to the task
at hand. Rather than cite statistics, I will rely 
on an anecdotal observation I made in the
course of studying how people learn scientific
concepts in elementary physics and mathem-
atics (Hunt & Minstrell, 1994).

Half a dozen science teachers participated 
in an exercise in which they measured the
diameter and circumference of a number of
circular objects (e.g., a tube) and then plotted
the circumference as a function of the dia-
meter. Not surprisingly they “discovered” the
linear relationship:

circumference = A * diameter

and A was approximately 3.17. The teachers
had “rediscovered” the value of π. Then my
colleague Jim Minstrell posed the question

shown in Figure 5. Suppose a steel band was
placed around the Earth at the equator. The
band would have to be 25,000 miles (40,000
km) long. How much longer would it have to
be if the band were suspended 6 feet (2 m)
above the equator? With one exception, the
teachers asserted that the band would have 
to be very much longer. If they applied the
schema that they had been using minutes
before they would have found that the second
band would be about 37 feet (12 m) longer than
the first.

My purpose is not to poke fun at teachers. I
suspect that many other professionals would
have made the same mistake. The point of this
story is that the transfer is difficult, because 
it requires that both the learning and the test
situation be mapped into the same abstract
representation. Forming the representation the
first time is an exercise in problem solving/fluid
intelligence, while recognizing that the repres-
entation can be applied is an exercise in crys-
tallized intelligence. With this perspective we
now return to psychometrics.

The status of the concept of intelligence 7
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Figure 5. Question posed to science teachers
shortly after they had plotted values of
circular objects as a function of their
radii. Most teachers failed to realize that
the length of the band around the equa-
tor would be only slightly increased if it
were raised 2 m above the earth.

The equator is 40,000 km long. Suppose a steel
band is placed 2 m above the equator. How much
longer than the equator would the steel band be?



Complementarities and
importance

R. J. Sternberg (1990) has pointed out that
when we explore a topic as complex as the
mind we use metaphors to guide our thinking.
Cognitive psychologists and psychometricians
use different metaphors, but their ideas are
beginning to converge. The picture that emerges
from cognitive psychology studies of intelli-
gence is strikingly complementary to Cattell
and Horn’s division of general intelligence into
fluid and crystallized components. (The com-
plementarity extends to visual reasoning, the
Gv component, but there is not space here to
discuss the evidence.) People faced with new
situations (requiring Gf) must develop new
representations of the current problems, thus
imposing a heavy load on immediate (working)
memory and upon the closely related ability to
move information around in the brain/mind
system. When problem solving depends upon
previously acquired knowledge the information
processing burden shifts to pattern recognition
processes, which are a separate part of the
human information processing system.

It follows that most learning is, in effect,
problem solving rather than a rote memor-
ization task. Therefore intelligence, as tested
by conventional tests with large g or Gf com-
ponents, should do a better job of predicting
individual differences in performance during
the acquisition phase of a task than during 
performance following acquisition. They do.
The validity coefficients for intelligence tests
are substantially higher when the criterion is
performance in a workplace setting (Hartigan
& Wigdor, 1989). This finding is sometimes
interpreted as showing that intelligence tests
predict only “school” performance. I disagree. I
believe that the key issue is learning, not the
fact that the learning is taking place in the
school.

Figure 6 summarizes a U.S. military study of
the performance rating of enlisted personnel as
a joint function of their intelligence test (with
class I-II personnel having the highest scores,
and class IV the lowest) and the time that they
had been in their military job. The relationship

between job knowledge and intelligence be-
comes smaller the longer people are on the job,
but it never completely goes away.

Much the same point can be made in lab-
oratory studies, where learning is studied under
more tightly controlled conditions, but over a
much shorter timescale, usually days rather
than months. Ackerman (1988) has conducted
an extensive series of such experiments. He
found that the correlation between intelligence
test scores and performance on a simulated air
traffic control test dropped, but did not dis-
appear, as training was extended. In my own
laboratory Susan Joslyn has conducted a 
study that extends Ackerman’s results, using a 
somewhat more realistic simulator. The Raven
Progressive Matrix, a test that shares no con-
tent with air traffic control, predicted the
number of trials required to learn the con-
troller’s task to a set criterion (r = .68), but was
a poor predictor of performance after training
had been completed (r = .07).

Another implication of the cognitive psy-
chology approach is that as people become
more expert they will become more special-
ized. They will learn to develop the schema 
and exercise the cognitive skills that are rel-
evant to their interests. This is consistent with
Detterman and Daniel’s finding (and our
extension of it) that cognitive skills are more
differentiated at the upper than at the lower
end. However, the specialization argument also
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formance (Wigdor & Green, 1991).



suggests that related skills should become more
closely bound together. To use an extremely
stretched metaphor, we are faced with some-
thing of a “big bang” theory of intelligence,
where the g factor relates to time. At the low
end, all abilities are closely bound together. At
the high end, abilities form “galaxies,” where
related abilities are tied together into closely
bound clusters, but the clusters themselves lie
further and further apart.

Does this specialization actually happen?
David Waller and I, in unpublished work in our
laboratory, examined the correlations between
subtests of the ASVAB in the NLSY sample.
We estimated population correlations between
subtest, using as samples either the highest or
lowest deciles, as defined by removing one test
and using it as a stratifying variable. As has
already been shown (Figure 3, p. 4) the average
correlations between subtests decrease when
this is done. However, the highest correlations
are virtually unchanged. For instance, two of
the most highly correlated subtests in the NLSY
data bank are the pairs (word knowledge, para-
graph comprehension) and (word knowledge,
general scientific knowledge). The correlations
between these pairs are respectively .67, .68 
in the 0th decile and .70, .70 in the 9th decile
(averaging over deciles defined by different
tests). On the other hand, the lowest correlation
in the 0th decile is between clerical-perceptual
skills and automechanics knowledge (.30). In
the 9th decile this correlation is –.04.

These results are extremely important for
industrial societies, albeit for not quite the
reasons that some observers (notably Herrnstein
& Murray, 1994) have suggested. Workforces
are aging throughout the industrial world. At
the same time, technological advances have
accelerated changes in how the workplace
operates (Hunt, 1995). We know that as adults
age there are declines in fluid intelligence and
slight increases in crystallized intelligence. This
is of no matter in a static society, for what the
worker sells to the employer is knowledge of
how things have worked in the past. But if the
future is not going to be like the past, the
worker has to sell his or her ability to learn.
This ability may be precisely what decreases

with age. Viewed from the optimistic side,
there is a fundable research opportunity here!
We need to find ways to facilitate lifelong
learning. If such research is not carried out, and
its results implemented, older workers will be
faced with economic insecurity at precisely the
point in their lives at which they, as parents 
and responsible leaders, require maximum eco-
nomic security so that they can meet the other
demands of life. This effect is magnified, of
course, by any tendency for women either to
postpone parenting or to marry older men. Our
society has yet to think through the profound
interaction between technological change and
the demographics of cognitive abilities.

About 40 years ago Cronbach (1957) urged
the “two camps of scientific psychology,” the
laboratory scientist and the test constructor, to
work together. Almost 40 years later it is clear
that there has been a response, and that this
work has substantially extended our knowledge
of intelligence.
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