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Abstract

The impurity of measures is considered as cause of erroneous interpretations of observed relationships. This paper concentrates
on impurity with respect to the relationship between working memory and fluid intelligence. The means for the identification of
impurity was the fixed-links model, which enabled the decomposition of variance into experimental and non-experimental parts. A
substantial non-experimental part could be expected to signify impurity. In a sample of 345 participants error scores and reaction
times, which were obtained by the Exchange Test, represented working memory, and Advanced Progressive Matrices served as
measure of fluid intelligence. The four independent latent variables of the model associated with error scores and reaction times led
to a multiple correlation .67 with the latent variable of fluid intelligence. However, there was impurity since the decomposition by
means of the fixed-links model showed that only 45% of the common variance was due to working memory.
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The question of whether working memory contri-
butes to intelligence has stimulated a large number of
studies. As consequence, many correlational results
suggesting the existence of a substantial relationship are
available. Ackerman, Beier and Boyle (2005) report a
metaanalytic investigation of 57 studies and suggest a
correlation of .48. The inspection of the individual
results reveals that this field of research shows a high
degree of heterogeneity. There are rather low besides
very high correlations. The results obtained by means of
structural equation modeling are most impressive. Some
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studies even suggest near identity of working memory
and intelligence with respect to individual differences.
Typically, the relationship is investigated at the latent
level in considering a number of (slightly differing)
measures (e.g., Buehner, Krumm, & Pick, 2005; Colom,
Abad, Rebollo, & Shih, 2005; Colom, Rebollo,
Palacios, Juan-Espinosa, & Kyllonen, 2004; Colom &
Shih, 2004; Engle, Tuholski, Laughlin, & Conway,
1999; Kyllonen & Christal, 1990).

The heterogeneity of results demands for an
explanation. Actually, there is a number of potential
explanations. For example, the difference between
correlations observed at the manifest level on one
hand and at the latent level on the other hand provides an
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explanation. Different degrees of similarity between the
measures for the assessment of working memory on one
hand and of intelligence on the other hand give rise to
another explanation (Schweizer, 2005). Samples origi-
nating from different populations, which in varying
degrees allow age to act as moderator can also be
accepted as explanation since age was found to be an
influential source (Salthouse, 2005). Furthermore, there
is the impurity of measures as explanation. There may
be different degrees of impurity. If impurity is given, one
part of the observed relationship is due to the intended
source of performance whereas the other part is due to
another source. Impurity calls the interpretation of the
result into question.

This paper concentrates on the so-called impurity
problem with respect to the relationship between
working memory and intelligence. It demonstrates that
the impurity of measures can lead to an erroneous
interpretation of results concerning the relationship. The
identification of impurity requires the combination of
differential and experimental methodologies as pro-
posed by Cronbach (1957) some time ago. Furthermore,
it is necessary to apply a special structural equation
model, denoted fixed-links model (Schweizer, 2006a).
In the following sections the impurity problem is
presented in more detail, the methodology is described
and applied to data obtained by means of measures of
working memory and fluid intelligence. The investiga-
tion of data in considering the impurity problem ends up
with the separation of common variance into parts due to
the intended source of performance and due to other
sources. If the part due to the other sources is negligible,
impurity is not a problem.

1. The impurity problem

Measures representing cognitive concepts are nor-
mally not pure measures. In analyzing the processes
contributing to performance in completing choice
reaction time tasks Jensen (1982) came up with four
processes: encoding, operation, binary decision and
response. In many cognitive tasks the uptake of
information is necessary for initiating the process of
interest and the conduction of motor processes for
terminating processing. However, neither one of these
processes is essential for answering the research
question. Furthermore, Van Zomeren and Brouwer
(1994) argue that completing a test, which measures
divided attention, additionally requires alertness, fo-
cused attention and sustained attention. This argument is
pointing into the direction of the dilemma of attention
research. The manifestation of attention includes the

taking influence on some of the transformation
processes, which constitute information processing.
This is especially obvious in complex tasks which
require a lot of executive control (Miyake, et al., 2000).
As consequence, attention, which is a predictor of
intelligence (Schweizer, Moosbrugger, & Goldhammer,
2005), typically contributes to correlations between
measures representing transformation processes and
measures of intelligence. It is the manifold of processes
contributing to performance, which constitute the
impurity problem of differential research since perfor-
mance is almost always due to a number of different
processes. Because of this problem the validation of
measures is necessary. However, validation can only
guarantee that the concept of interest, which the measure
is expected to represent, is reflected by the major source
of performance.

In experimental research the impurity problem is
avoided by means of several provisions of which the
most important one is experimental treatment (see
Harris, 2003). The comparison of the results obtained
for the various treatment levels enables the concentra-
tion on the relevant components of measurement.
Although the experimental effect may be reflected by
a small component of the measurement only, appropriate
statistical methods enable its identification. The combi-
nation of treatments and statistical methods provides the
opportunity to get a grip on the impurity problem. In
sum, the experimental methodology including treat-
ments and statistical methods allows the experimental
researcher to overcome the impurity problem. The
success of this methodology provides the blueprint for
an analogical approach within differential research.

It needs to be added that impurity is not a problem
which is restricted to ability research. In personality
research impurity was already identified as an annoy-
ance a long time ago. In this field of research the
multitrait—-multimethod approach (Campbell & Fiske,
1959) was proposed in order to identify impurity. The
core of this approach is the multitrait—multimethod
design. Furthermore, structural equation modeling has
been applied for improving the quality of measurement.
Since neither the multitrait—-multimethod design nor
structural equation modeling alone proved to be
sufficient with respect to the impurity problem, this
approach was combined with structural equation
modeling (Kenny & Kashy, 1992). Although the
multitrait—-multimethod approach is intriguing, in the
field of cognitive ability it is inappropriate since often a
specific method of measurement is characteristic for the
corresponding concept. As a consequence, a comparison
of methods is not possible.
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2. Experimental measures within differential research

It is interesting to note that there is already a tradition
of experimental measures in differential research. There
are tasks including several treatment levels, which have
frequently been employed for investigating the relation-
ship between cognitive processes and intelligence. It
was a major characteristic of such treatment levels that
they posed demands on the same cognitive processes.
For example, there is the so-called choice reaction time
task (Jensen & Munro, 1979), which has been especially
often applied as measurement device. In this task the
various treatment levels consist of different numbers of
light bulbs, which are to be monitored. In the list-search
task (Neisser, 1963) the target stimulus is included in
lists differing in length, thus giving rise to different
treatment levels. In the memory-scanning task (Stern-
berg, 1966) different numbers of letters have to be stored
in short-term memory. The different amounts of
information, which need to be stored and scanned,
provide different treatment levels. Different numbers of
ordering operations give rise to different treatment
levels in the SWAPS task (Stankov, 2000). In all these
tasks the investigation of the effects of the treatment
levels usually reveal substantial differences in reaction
time and accuracy whereas the results concerning the
relationship of reaction time and accuracy on one hand
and intelligence on the other hand are often neither
impressive nor very consistent. For example, the in-
creases from treatment level to treatment level observed
in the choice reaction time task prove to be very small in
a very large sample (Jensen, 1987).

3. The exchange test as (experimental) measure of
working memory

The present work concentrates on cognitive process-
es associated with exchange operations as example. The
execution of such operations can be ascribed to the
central executive of working memory (Baddley, 1986).
These operations are elementary and very easy to be
performed if the items to be exchanged are simple
enough. The exchange operations of interest are
stimulated by the tasks of the Exchange Test (Schweizer,
1996). This test served as the measure of working
memory within several studies which I conducted in my
lab or the lab of a colleague. Furthermore, there are
reports of applications by independent researchers
(Neubauer, Stern, & Grabner, 2005; Stankov, Brine, &
Bowman, 2005). This test possesses all the character-
istics, which a measure of working memory should
show according to Bayliss, Jarrold, Gunn and Baddeley

(2003). These characteristics in combination with the
simplicity of the cognitive operations, which are
stimulated, render this test as ideal candidate for the
investigation of the impurity problem.

In completing this test a few simple figures (lines,
squares, cross, etc.) showing a specific ordering have to
be exchanged mentally. Since the exchanges are
restricted to neighboring figures, intermediary config-
urations, which must temporarily be retained, are gen-
erated. This means that the exchange operations are
closely associated with storage operations. Exchange
operations are also necessary in completing the Tower-
of-Hanoi task. The difficulty characterizing this task is
ascribed to the load on working memory (Carpenter,
Just, & Shell, 1990). In completing the Raven problems
the load on memory also proved to be of special
importance (Unsworth & Engle, 2005). Analogically, in
the Exchange Test a high number of exchange and
storage operations can be assumed as source of error.
Furthermore, there are processes which are independent
of the number of figures to be exchanged. They include
the initial generation of a mental representation and the
response, which terminates processing. In sum, there are
processes which are independent of the various
treatment levels and processes which reflect the
treatment levels.

The Exchange Test provides two types of perfor-
mance measures, accuracy and reaction time. Further-
more, the error score does as well as accuracy because
accuracy is defined as the difference between the
number of trials and the number of errors. Since single
exchange operations are so easy to be performed and
specific strategies do not provide an advantage, storage
problems are to be considered as the major source of
error/lack of accuracy. Errors can occur directly or
indirectly due to capacity limitation (Schweizer, 2000,
2001). Directly means the transgression of capacity
limitation whereas indirectly indicates the failure to stay
within the time limit. Mechanisms leading to time-
dependent failure were described by several authors
(Jensen, 1982; Salthouse, 1993). Therefore, errors,
which occur indirectly, can be expected to show de-
pendence on processing times whereas errors, which
occur directly, should prove to be independent of
processing times.

It is reasonable to expect an increase in reaction time
from treatment level to treatment level since additional
exchange and storage operations are stimulated. The
execution of the additional operations requires the
completion of the operations already stimulated by the
previous treatment level. Although the test demands
suggest a linear increase, there may be deviations due to
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either acceleration or slowing. Acceleration can happen
because of the facilitation of processing (positive
priming) and the slowing because of inhibition of
processing (negative priming). Since the simple figures
serving as material are changed from trial to trial, and
speed is a basic property (Helmbold & Rammsayer,
2006), constancy or slowing is more likely than ac-
celeration. Furthermore, the relationship between the
exchange and storage operations on one hand and
perceptual and motor operations on the other hand is to
be considered. Since exchange operations presuppose
the completed representation of the material, indepen-
dence of the types of operations is likely. Moreover,
motor operations, which terminate the trial, presuppose
the completion of the exchange operations. So there is
some reason for assuming that the corresponding
processes are in agreement with the additive model
(Sternberg, 1969).

4. Experimental measures as basis for the
decomposition of variance

The experimental measures have so far not been
combined with a statistical method, which is really
suitable for the isolation of the experimental effect
within the framework of differential psychology. The
statistical method should decompose the variance into
one part, which reflects the source stimulated by the
experimental treatment, and another part, which reflects
all the other sources. Formerly, there were comparisons
of correlations associated with different treatment levels.
However, very large samples were necessary for reach-
ing the level of significance in such comparisons, and in
many cases the consideration of a lot of individual
results was required. Furthermore, difference scores and
regression parameters were computed at the manifest
level for getting grip on the concept of interest.
However, the results obtained this way usually showed
a low degree of reliability and, consequently, a high
degree of heterogeneity. No wonder, there was a long-
lasting debate about the usefulness of such measures
(see Cronbach & Furby, 1970).

A major reason for the disappointing results was
presumably the fact that the former investigations were
conducted at the manifest level, which is the level of the
observations. More favorable results can be expected at
the latent level since the step from the manifest level to
the latent level includes the elimination of error.
Therefore, it is reasonable to investigate the effects of
the treatment levels at the latent level. All the favorable
results mentioned in the introduction section were
obtained at the latent level. However, such an inves-

tigation cannot be performed properly by means of the
conventional structural equation model (Jéreskog, 1973;
Keesling, 1972; Wiley, 1973) since in this model the
differences between the treatment levels are not
retained. In the conventional model each one of the
measures associated with one level either receives its
own latent variable, or all the measures are linked to the
same latent variable. Neither one of these alternatives is
well suited for representing the systematic differences
between the treatment levels. These alternatives do not
guarantee the decomposition of variance according to
the treatment levels.

5. The fixed-links model as means for the
decomposition of variance

The model, which includes constraints of the
loadings of the manifest on latent variables (Schweizer,
2006b), enables the appropriate representation of the
systematic differences between the treatment levels. In a
way these constraints can be considered as a differential
weighting system for latent variables. Such constraints
also characterize latent curve models (see McArdle,
1988; McArdle & Epstein, 1987; Meredith & Tisak,
1984, 1990). Latent curve models have been developed
for the investigation of time-dependent change. The
latent curve describes the change, which occurs within a
definite time span, at the latent level. There are con-
strained loadings of manifest on latent variables, which
determine the shape of the latent curve.

Although the treatment levels of an experimental
investigation of cognitive processes are not associated
with specific points in time, there is some degree of
similarity to the notion of time-dependent change. The
treatment levels usually include the stimulation of the
same process and impose a specific temporal structure
on the measurements. For example, the same process is
stimulated once, two times, three times and so on, so that
there are different numbers of repetitions. This means
that the treatment levels represent different spans
between the initiation and termination of processing.
This consideration suggests similarity although the
treatment levels are not arranged according to a specific
sequence of points in time and although the material
used for stimulation slightly changes.

A rather general approach is selected as outset in
order to arrive at a formal representation of the sys-
tematic differences between the treatment levels, which
applies to a very general audience. It is provided by the
following model:

Y=g(X)+e



K. Schweizer / Intelligence 35 (2007) 591-604 595

where Y is the response variable, X the vector of
explanatory variables (=latent factors) and e the
residual. The function g is expected to represent the
true effect of the explanatory variables due to stimula-
tion. It is obvious that this model can be considered as a
version of the true-score model (Novick, 1966; Lord and
Novick, 1968) with the first summand as true score and
the second summand as error score.

The simple regression model suggests the consider-
ation of function g as the composite of two further
functions a and b such that

g(X) = a(X) + b(X).

The function giving the first summand represents the
intercept and the function giving the second summand
the slope. This equation includes very general descrip-
tions of both the intercept and the slope so that each one
of them can be specified in a variety of ways. Further-
more, it enables the simultaneous investigation of both
the effects on the means and covariances (including
variances). Information concerning the estimation of
latent factors can readily be taken from Kline (2006).

The most simple specification of function a is
achieved by including the sample mean of ¥ (M,):

a(X) = M,

which is characteristic of regression analysis. Further-
more, there is the possibility to specify a as mean
structure (Bentler & Yuan, 2000). Mean structures
enable the consideration of the different means which
are achieved as the result of the different treatment
levels or the subdivision of the sample into groups. The
means can be estimated and submitted to an investiga-
tion (e.g., Dolan et al., 2006). For example, in
longitudinal research the mean course of development
may be investigated by specifying a accordingly.

The appropriate specification of function b is espe-
cially important with respect to the formal representation
of the expected systematic differences between the
treatment levels. Since b is rather complex, the specifi-
cation occurs in two steps. Firstly, it is necessary to specify
b with respect to the explanatory variables (=latent
factors) which contribute. In assuming that £+ 1 explan-
atory variables need to be considered, b is given by

b(X) = boXo + b]X] “+ ...+ kak

where bf(i=0,..., k) is a weight and X;(i=0.....,k) an
explanatory variable (=latent factor). Secondly, the effect
of the experimental treatments needs to be specified
appropriately. In following specifications proposed within
the framework of latent curve analysis the polynomial

function (McArdle, 1988; McArdle & Epstein, 1987) is
selected for this purpose. Accordingly, the function b
must be adapted to the different treatment levels, and the
weights must be replaced by the corresponding constitu-
ents:

b(X), =" Xo +j' X1 + ... +/'X;

where b associated with the index j(j=1...., p) is the
version of the function, which applies to the jth treatment
level, and the weight j an integer which reflects the
treatment level also (major parts of this function are
denoted constituents in this paper instead of components
in order to avoid confusion with the components of the
model of measurement). It is useful to consider the
constant, linear and quadratic constituents since higher-
order constituents of the polynomial function are not very
likely in small numbers of treatment levels. The weights
of this equation make especially obvious that the
constraints of the fixed-links model may be perceived as
a differential weighting system for the latent variables.
Whereas the general model applies to both the means
and covariances (including variances), the fixed-links
model is restricted to covariance matrices. This means
that the intercept of g is not considered and the observed
scores are assumed to be standardized to a mean of zero
(y instead of Y). The concentration on the fixed-links
model requires the formal presentation of the parameters
of the model of measurement in a way which is typical
for structural equation modeling. Accordingly, the
model of measurement associated with y is defined as

y=A4n+e¢

where yl = (y1,...,1,)'] and el = (&1, ...,¢,")] are the
px1 vectors of observations and of error com-
ponents, L = (ny,...,1,)'l is the g x1 vector of latent
variables (=latent factors) and A the px¢g matrix of
loadings (=links relating latent to manifest variables)
(Bollen, 1989, p. 18). Whereas in the conventional
model of measurement most elements of A are con-
strained to zero and the other elements are free to be
estimated, in the fixed-links model of measurement all
(or almost all) the elements are constrained. The
elements, which are constrained to zero in the
conventional model, are also constrained to zero in the
fixed-links model. However, both these models differ
with respect to the elements of A, which are free in the
conventional model. In the fixed-links model these
elements are assigned to the sets of numbers which as a
whole must represent the effects of the treatment levels
appropriately. Setting free the diagonal elements of the
covariance matrix ® compensates for the restriction due
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Fig. 1. Graphical representation of the model for the decomposition of variance into parts due to experimental and non-experimental sources with one

dependent latent variable.

to the constraint of the elements of A. This is obvious
from the model of the covariance matrix X:

Y =494 + 0O

(where © is the diagonal matrix of error scores) since A
and ® depend on each other. Both of them cannot be
free at the same time.

6. The decomposition of variance into experimental
and non-experimental parts

The precondition for the constraint of the elements of
A is the availability of appropriate numbers. In latent
curve models the numbers must guarantee the error-free
representation of growth. There are two ways of making
use of the polynomial function in latent curve and fixed-
links models (see Schweizer, 2006a). In the first way, each
one of the constituents (constant, linear, quadratic, etc.) is
represented by means of one column of A. This means
that numbers giving rise to the corresponding curve are
inserted into the columns of A. Such numbers are
included in the fifth equation of the previous section. An
example constructed with respect to six treatment levels,
constant, linear and quadratic constituents is given by

1 1 1
1 2 4
1 3 9
A= 1 4 16
I 5 25
1 6 36

In this case each constituent leads to one latent variable.
Asconsequence, there is the decomposition ofthe variances
of the manifest variables. Such decomposition is useful
when the relationships between the latent variables
representing different constituents and other latent variables
need to be investigated. In the second way of employing the
polynomial function the constituents are combined so that
A includes one column only. This means that the weights of
the polynomial function must be estimated outside of
structural equation modeling and applied for obtaining the
requested numbers. Since the investigation of impurity
requires the decomposition of variance into at least two
parts, only the first way is appropriate for this paper.

In the formal model each constituent is associated with
one latent variable. Since the constituents of increase
represent the effect of experimental treatment and the
constituent of constancy is the referent of the effect of
non-experimental sources, there are two types of latent
variables, which guide the decomposition of variance.
They guarantee that the experimental and non-experimen-
tal parts of variance result. In assuming one latent vari-
able for each one of the experimental effects in reaction
times and error scores and a further latent variable for
each one of the non-experimental effects in reaction times
and error scores the model included in Fig. 1 is achieved.

It additionally includes reaction times and error scores
as manifest variables, which are assigned to the
independent part of the model. The dependent part is
composed of the latent variable representing intelligence
and a measure of'intelligence serving as manifest variable.

In small numbers of treatment levels and a restricted set
of latent curves the constituents of the polynomial function
are useful tools for representing data. Alternatively, the
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exponential function can be applied for this purpose
(Meredith & Tisak, 1990). This function is especially
useful in cases where an asymptotic curve underlies
performance observed for the treatment levels. Since the
different functions show different properties, it is reason-
able to select the function with respect to the characteristics
of the cognitive processes which need to be considered.

7. Aims of investigation

This paper serves several aims. Firstly, the relationship
between working memory and intelligence shall be
investigated in considering the impurity problem. This
investigation can be expected to reveal whether the
observed correlation is only due to the intended source or
whether it is the result of several additional sources
besides the intended source. Secondly, the decomposition
of the variance into parts, which are due to experimental
and non-experimental sources, is to be achieved.
Although this aim is considered secondary according to
its importance, its attainment is even the precondition for
the attainment of the first aim. Thirdly, there is the
demonstration of the benefits of combining differential
and experimental methodologies as aim.

8. Method
8.1. Participants

The data were taken from three independent studies'.
The sample of the first study included 124 participants
(Schweizer & Koch, 2001a), the sample of the second
study 104 participants (Schweizer & Koch, 2001b) and
the sample of the third study 120 participants (Schweizer
& Moosbrugger, 2004). Although the first and second
studies were published in the same year, there was no
person who participated in both studies. Because of
incomplete data three participants were excluded so that
the complete sample included 345 participants.

8.2. Measures

8.2.1. The measurement of fluid intelligence
Raven’s (1962) Advanced Progressive Matrices
(APM) served as the measure of fluid intelligence. Fur-

' The data were taken from studies which were already published
because of two reasons: Firstly, a large sample size is necessary for
obtaining accurate estimates. It takes a great deal of time to achieve
such a sample size by computer-based testing. Secondly, a financial
reward is necessary in order to attract motivated participants.
Therefore, it would be very costly to have such a large sample.

thermore, this measure even showed a large loading on
the g factor (Johnson, Bouchard, Krueger, & McGue,
2004).

8.2.2. The measurement of cognitive processes

The Exchange Test (Schweizer, 1996) was applied
for measuring working memory. This test mainly
stimulated exchange processes and storage processes.
The participants had to perform exchanges of neigh-
boring figures mentally until two lists of five simple
figures corresponded. Furthermore, the participants
had to count the number of exchanges. After the
completion of the task the response button had to be
pressed. Then the lists were removed from the screen,
and the participant was asked to store the number of
exchanges.

There were six treatment levels. The first treatment
level required one exchange per task, the second
treatment level two exchanges, the third and fourth
treatment levels three exchanges, the fifth treatment
level four exchanges and the sixth treatment level five
exchanges. In order to have a monotonic increase of the
number of exchanges, one of the two treatment levels
requiring the same number of exchanges was eliminat-
ed. It was the third treatment level which was selected
for elimination. After the elimination the treatment
levels were renamed. The remaining levels were
addressed as first to fifth levels.

8.3. Statistical analysis

In the first step descriptive statistics were computed
for the error scores and reaction times of the treatment
levels. In the second step APM, error scores and reaction
times were correlated with each other. In the third step
the models of measurement for error scores and reaction
times constructed as fixed-links models were investi-
gated. The fourth step served the investigation of the
relationship between working memory and fluid
intelligence by means of the complete fixed-links
model. LISREL was applied for this purpose (Joreskog
& Sorbom, 2001).

Three latent variables were considered at the most.
The three constituents of the polynomial function
(constant, linear, quadratic) were used for the establish-
ment of the links between the latent and manifest
variables. The links were standardized so that

pl = diag(A’'A)

where A was the px¢ matrix of loadings, I the qxq
identify matrix and p the number of manifest variables.
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Table 1
Means and standard deviations obtained by means of exchange test
(N=345)

Statistic Level

1 2 3 4 5

Reaction times
Mean 1767 4776 8054 10929 13296
Standard deviation 701 2209 3575 5326 5206

Error scores
Mean 0.31 1.31 2.70 4.07 6.00
Standard deviation 1.13 2.06 2.81 3.24 4.04

Standardization was considered necessary in order to
obtain variances of the latent variables, which showed
an acceptable size. In the absence of standardization the
variances, which are estimated, usually differ consider-
ably. The first column of A which is associated with the
first latent variable leads to an acceptable size of
variance whereas the last column yields a very small
variance. The small size is due to the large numbers
included in the last column of A (see example) since the
numbers serving as constraints are included in the
computation of the variances. Standardization assures
that the variances can be compared among each other.
However, it does not influence the level of significance.

Since the reaction times were computed on the basis
of individual measurements obtained for correct
responses, there were cases in which the number of
individual measurements was too small to obtain a
reliable estimate of the participant’s reaction time. As
consequence, there were so many missings in the
highest treatment level that this level was excluded from
correlational analysis and structural equation modeling.
Note: the covariances of reaction times and error scores
on one hand and intelligence on the other hand were
recoded in order to obtain positive estimates in structural
equation modeling.

Table 2

9. Results
9.1. The effects of the treatment levels

Table 1 provides the means and standard deviations
obtained for the error scores and reaction times.

The means of reaction times showed a monotonic
increase from the first to fifth levels. In contrast, the
standard deviations only increased from the first to
fourth levels. The subsequent decrease presumably was
due to the high number of missings resulting from the
high proportion of errors in this treatment level.
Therefore, only first to fourth level reaction times
were included in the further investigations. In the error
scores there were monotonic increases of both the means
and standard deviations. Since there were twelve trials
per treatment level, the mean of the fifth treatment level
suggested that on average 50% of the responses were
not correct.

9.2. The relationships among APM, reaction times and
error scores

The correlations among APM, reaction times and
error scores are given in Table 2. The first column
provides the correlations of APM with reaction times
and error scores. There was a decrease of the size of the
correlations with reaction times from the first to fourth
levels. In contrast, the sizes of the correlations with error
scores increased from the first to fourth levels. On
average the correlations with reaction times tended to
surmount the correlations with error scores.

Very high correlations characterized the relationships
among the reaction times. Most of the correlations
among the error scores were of moderate size. The
correlations of the pairs of one reaction time and one
error score were low or even negative. Apparently, these

Correlations of reaction times and error scores obtained by means of exchange test and APM scores (N=345)

Type Level APM Reaction times Error scores
1 2 3 4 1 2 3 4 5

APM 1.00
RT 1 —.42 1.00

2 -.37 74 1.00

3 -.27 .61 75 1.00

4 -.25 .55 .68 71 1.00
Error 1 -.14 11 .00 -.05 -.09 1.00

2 -.19 .05 —.04 -.07 —.08 24 1.00

3 -.28 .09 —-.02 —-.09 -.13 .26 41 1.00

4 —-.30 15 .06 .06 .10 17 .23 43 1.00

5 -.33 .08 —.04 —.11 —.08 .29 .29 51 A7 1.00
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Table 3

Fit statistics of fixed-links models of measurement for the reaction times

Model characteristic x df RMSEA GFI CFI NNFI AIC Negative estimate
Models with latent variables linked to all the manifest variables

Constant® 160.96 2 481 .81 17 32 176.96 —67.11 (TDy,)
Constant/linear® 23.93 1 258 97 97 .83 41.93 —213.71 (PHyy)
Constant/quadratic® 0.74 1 .000 1.00 1.00 1.00 18.74 —31.41 (TDy;)
Constant/linear/quadratic ® 1.46 1 .036 1.00 1.00 1.00 19.46 —68.25 (TDy;)
Revised models with free loadings for first reaction time

Constant 12.74 1 185 98 99 91 30.74 —741.86 (TDy;)
Constant/linear” 0.47 1 .000 1.00 1.00 1.00 18.47

Constant/quadratic 0.33 2 .000 1.00 1.00 1.01 16.33
Constant/linear/Quadratic © 0.89 1 .000 1.00 1.00 1.00 18.89

? In this model three correlations between error components were set free.

® In this model two correlations between error components were set free.

¢ In this model TD;; was fixed to zero in order to avoid a negative estimate.

correlations suggested independence of reaction times
and error scores.

9.3. The fixed-links models of measurement

At first, the results referring to reaction times are
considered. Models for confirmatory factor analysis,
which included latent variables associated with con-
stituents of the polynomial function, were applied to the
reaction time data. These models included latent
variables according to the following sets of constituents:
the constant constituent or the constant and linear
constituents or the constant and quadratic constituents or
the constant, linear and quadratic constituents. The
results are provided in Table 3.

Apparently, all the models with latent variables linked
to all the manifest variables, for which the results were
presented in the upper half of this Table, proved to be
inappropriate. In all these models at least one estimate
was negative, as it is obvious from the last column of this
Table. Furthermore, in all these models the correlations
between three pairs of error components had to be set free
in order to achieve the reported degree of fit.

Since the first reaction time was always associated
with a negative estimate, it was speculated that
information processing due to the first treatment level
could not really be compared with information proces-
sing due to the other treatment levels. In the first
treatment level the result was obvious to the participants
without performing an exchange operation. There was a
high probability that the participants applied different
strategies when performing according to the first
treatment level and the other treatment levels. As
consequence, it was decided to set the loadings of this
reaction time on the corresponding latent variables free
while keeping the other loadings constrained.

This decision led to a second set of models including
all the combinations of the constituents of the sets
described in the beginning of this section (see above).
The results for the revised models are presented in the
lower half of Table 3. There was again one model which
showed an inappropriate estimate (see last column). In a
second model (the model with latent variables for
constant, linear and quadratic constituents) the negative
estimate was eliminated by setting the corresponding
parameter to zero. Of the remaining models there was
one model which required additional correlations
between error components. Only the model which
included latent variables of the constant and quadratic
constituents remained without restrictions and addition-
ally showed a good degree of fit. Consequently, the best
description of the data was achieved by a model which
partly separated the first reaction time from the other
reaction times.

The error scores were also investigated by means of
models for confirmatory factor analysis, which included
latent variables associated with constituents of the
polynomial function. These models were rather similar
to the models applied for investigating the reaction
times: Again the models differed according to the
constituents giving rise to latent variables: the constant
constituent or the constant and linear constituents or the
constant and quadratic constituents or the constant,
linear and quadratic constituents. In applying all these
models it was necessary to allow the error components
of the second and third levels and the error components
of the fourth and fifth levels to correlate with each other.
The results obtained in investigating these models are
provided in Table 4.

Only two of the four models led to appropriate
results: the models including the latent variable of the
constant constituent and the model including latent
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Table 4

Fit statistics of fixed-links models of measurement for the error scores

Model® characteristic 7 daf RMSEA GFI CFI NNFI AIC Negative estimate
Constant 187.17 8 255 .82 .61 52 201.17

Constant/linear 22.69 6 .090 97 96 93 40.69 —0.11 (PHy))
Constant/quadratic 7.34 6 .025 99 1.00 .99 25.34

Constant/linear/quadratic 7.25 5 .036 .99 .99 .99 27.25 —0.29 (PHs3)

? In each one of these model the correlations between two error components were set free.

variables of the constant and quadratic constituents. The
other models led to negative estimates and, therefore,
had to be excluded. Of the remaining models the model
including latent variables of the constant and quadratic
constituents showed the better results according to all
the fit statistics. Furthermore, it was associated with the
lowest AIC.

9.4. The structure of the prediction of fluid intelligence

Both the measurement models obtained for the
reaction times and the error scores were combined into
an overall model in order to predict fluid intelligence.
The correlations of error components of one measure-
ment model were retained (error components of second
and third error scores and of the fourth and fifth error
scores)®. Accordingly, there were four independent
latent variables and one dependent latent variable.
Each independent latent variable was directly linked to
the dependent latent variable. The dependent latent
variable was linked to Raven’s (1962) Advanced
Progressive Matrices as manifest variable. Since the
manual of APM suggested a minimum reliability of .83,
the corresponding error component was set to .31.
Furthermore, it was necessary to set the correlation of
the error component of the fourth treatment levels
(reaction times and error scores) free. Note: in the fol-
lowing paragraphs the latent variables associated with
specific constituents are addressed as corresponding
constituents in order to facilitate communication.

This model showed a good degree of fit: x>=63.62
(df=32, p=.000), RMSEA =.054, NFI=.95, NNFI=.97,
CFI1=.98, GFI=.96 and AGFI=.94. The variances of the
independent latent variables were considerable (the va-
riance of the constant constituent of reaction time: 312.05,
the variance of the quadratic constituent of reaction time:
609.18, the variance of the constant constituent of error
score: 0.48, the variance of the quadratic constituent of

2 Since 36 correlations of errors components are possible, the
percentage of error correlations is 5.5 that is only a bit above the
chance level.

error score: 4.19). In both cases the variance due to
increase surmounted the variance due to constancy. After
the standardization® of the loadings with respect to
variance, the elements of A provided interesting insight
into the associations of manifest and latent variables.
Table 5 includes these elements®.

The first column refers to the constant constituent
associated with the reaction times. Apparently, the first
reaction time gave rise to the second to highest number
of this column. Since this reaction time excluded
repetitions, it could be assumed to be mainly due to
the generation of the mental representation, the
comparison and the motor response. Because of the
special importance of the speed of perceptual processes
and of motor response in other investigations the
corresponding latent variable was denoted “PerMot
Speed”. In the second column there was an increase of
the numbers from top to bottom. Therefore, the
corresponding latent variable could be considered as
the expression of cognitive speed associated with the
exchange operations. It was denoted “Exchange Speed”.
The third column included the numbers referring to the
constant constituent associated with error. This column
showed the highest number with respect to the first error
score. Since the corresponding task was not very
demanding in the short run but in the long run, it was
thought to reflect motivation and basic types of
attention. The corresponding latent variable was
denoted “Motivation/BasAttention”. The numbers of
the last column represented the quadratic constituent.
Since the high numbers refer to the error scores of the
fourth and fifth levels, this column could be assumed to
be due to properties of working memory. This gave rise
to the name “Working Memory”.

* This type of standardization is a routine procedure of every
program for structural equation modeling. The variances of the
manifest variables are set to one. This is a provision which assures
that the coefficients are restricted to the range between +1 and —1.

* Please note that the numbers of this Table cannot be related to the
numbers of the matrix provided on page 12 since there are different
numbers of rows.
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Fig. 2. Graphical representation of the fixed-links model with four independent latent variables and one dependent latent variable (dotted lines
represent free links) (Note. The covariances of reaction times and error scores on one hand and intelligence on the other hand were recoded so that

positive estimates of the gamma coefficients were obtained).

Fig. 2 provides the graphical representation of the
model. This figure includes the estimates of the links
between independent and dependent latent variables.

The latent variables of this Figure are termed
according to the interpretations of the columns of
Table 5 (see previous paragraph). Of special interest
were the estimated As concerning the first reaction time.
The first reaction time showed the larger A (.70) with
respect to the constant constituent and the smaller 4 (.36)
with respect to the quadratic constituent. This relationship
among the As corresponded to expectations. The multiple
correlation was .67. Apparently, 45% of the variance of
fluid intelligence was explained by latent variables
associated with reaction times and error scores.

All the latent variables substantially contributed to
fluid intelligence: the latent variable of constant
constituent (PerMot Speed) associated with reaction

Table 5
Standardized lambda coefficients of reaction times and error scores

Manifest variable Latent variable

1 2 3 4
First reaction time .70 .36 - -
Second reaction time .81 48 - -
Third reaction time .50 .67 - -
Fourth reaction time .34 .80 - -
First error score - - .61 13
Second error score - - 33 28
Third error score - - 25 48
Fourth error score - - 21 1
Fifth error score - - 17 91

time —y=.44 (1=6.19, p<.01), the latent variable of
quadratic constituent (Exchange Speed) associated with
reaction time —y=.20 (z=2.87, p<.0l), the latent
variable of constant constituent (Motivation/BasAtten-
tion) associated with error score —y=.22 (¢=2.33,
p<.01), and the latent variable of quadratic constituent
(Working Memory) associated with error score —7=.40
(t=5.85, p<.0l). In the previous paragraph it is
indicated that the four independent latent variables
account for 45% of the variance of the dependent latent
variable. In order to facilitate further reasoning, the
amount of accounted variance is set to 100 (=45%). The
two latent variables associated with experimental
sources predict 45% of the accounted variance, and
the two latent variables associated with non-experimen-
tal sources predict the remaining 55%. It was interesting
to observe that neither the correlation between the latent
variables associated with experimental sources (r=
—.11, t=—1.64, n.s.) nor the correlation between the
latent variables associated with non-experimental
sources (r=.17, t=1.69, n.s.) reached the level of
significance. Apparently, the latent variables of reaction
times and error scores were independent of each other.
This observation suggested that the errors were mainly
due to capacity limitation and not due to time limitation.

10. Discussion

In the introductory section the impurity of measures
was presented as possible cause of the extremely high
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correlations between measures of working memory and
measures of intelligence. It gave rise to the present
investigation based on data that were obtained by means
of Exchange Test and Advanced Progressive Matrices.
The results suggest that impurity is really a problem.
There is approximately one half of variance, which is
predicted by the Exchange Test and which can be
ascribed to working memory, whereas the other half of
variance does not originate from working memory
although the Exchange Test also accounts for this half.
The effect of impurity is more severe in reaction times
than in error scores. All these observations signify that
the impurity of measures is a problem, which should be
taken seriously.

It may be argued that all these findings do not prove
that the interpretations of the correlations addressed in the
introductory section are really invalid because they are
due to impurity. Although this argument is correct, it does
not preclude the danger of erroneous interpretations.
Therefore, precautions should be taken in order to avoid
erroneous interpretations of results because of impurity.
Furthermore, it may be objected that the Exchange Test is
insufficient for representing such a complex structure like
working memory. However, this latter argument does not
count in the light of the finding that working memory is
domain-general (Kane et al., 2004).

The insights provided by this investigation into the
relationship between working memory and fluid
intelligence are mainly due to the fixed-links model.
The benefits of this model become especially obvious
when it is compared with the conventional model. The
fixed-links model enables the decomposition of variance
with respect to the experimental treatments. Therefore, it
needs to be highlighted that the constraints according to
the experimental treatments in the fixed-links model
provide the basis for substantiated interpretations of the
latent variables. In contrast, in the conventional model
the decomposition of variance is mainly the separation
of true variance from error variance. Even if further
decomposition is introduced there is no possibility to
guide the decomposition exactly according to the
experimental treatments.

The inclusion of linear and quadratic constituents
into the matrix of loading may convey the impression
that the statistical power of the model is low because of
dependence between the constituents. In assuming that
the constituents are moments, it may be argued that the
quality of the higher-order moments depends on the
quality of the lower-order moments. In this case errors
can be assumed to be transferred from one level to the
next level. Fortunately, the constituents can by no means
be perceived as moments. They do not depend on each

other, and they are estimated independently. For
example, it is possible to have a quadratic constituent
without having a constant or a linear constituent. There-
fore, the inclusion of linear and quadratic constituents
into the model does not impair the statistical power.

The constraint of all the loadings may give rise to
concerns regarding the replicability of the results. These
concerns are redundant since the constraints are not due to
capitalization of chance. There were only a few
alternatives which were constructed in a systematic way.
Furthermore, the observation that the combination of
constant and quadratic constituents serves best in reaction
time data is not a singular result. A similar result was
already achieved in choice reaction times (Schweizer,
2006a). A composite of constant and quadratic constitu-
ents served better than other types of composites in
investigating choice reaction times.

Constraints can be interpreted in the same way as
loadings. High constraints suggest a close association of
the corresponding manifest and latent variables and low
constraints a weak association. The relationships among
the constraints are important. For example, in consid-
ering the quadratic constituent it becomes obvious that
the corresponding latent variable is closely associated
with a very few manifest variables only. In contrast, the
consideration of the constant constituent reveals equal
associations with all the manifest variables. Problems
may arise when taking the perspective of the manifest
variable. In this case it is recommendable to use stan-
dardized constraints in order to achieve a reasonable
interpretation.

The results observed for the reaction times suggest
three things. Firstly, the large non-experimental effect
associated with reaction times can be regarded as ev-
idence for the mental-speed approach (Neubauer, 1997).
Obviously, there is a source of individual differences,
which considerably contributes to fluid intelligence and
is independent of exchange and storage processes.
Secondly, the substantial contribution of the quadratic
constituent makes obvious that repetition does not lead
to the gradual merging of processes. Processing seems
to show serial instead of parallel characteristics (Meyer,
Yantis, Osman, & Smith, 1985). Apparently, processing
due to the task demands is mainly controlled processing.
Thirdly, the investigation reveals that the first reaction
time differs from the other reaction times. This reaction
time is not due to the whole set of processes leading to
the other reaction times. Presumably, the participants do
not really complete all the exchanges which are required
by the tasks of the other treatment levels. After having
noticed that two neighboring figures need to be
exchanged the participants disrupt processing since
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they already know the answer to the question which is
asked afterwards (What is the number of exchanges?).
In this case performance is mainly due to perceptual
processing (see Deary & Stough, 1996; Schweizer &
Koch, 2003).

The increase of the error scores is well described by the
curve resulting from the constant and quadratic constitu-
ents of the polynomial function. In the standardized
solution it becomes apparent that the error score of the first
treatment level is by far the best marker of the latent
variable due to the constant constituent. Therefore, this
latent variable receives its meaning mainly from this error
score, which is presumably due to the ability to process
routine tasks with high precision. Such continuous
performance attention seems to correlate only moderately
with intelligence (Rockstroh & Schweizer, 2001, 2004).
In contrast, the quadratic constituent is likely to represent
storage capacity since it receives the highest loadings
from the errors scores of the upper levels. The quadratic
constituent does presumably not reflect the exchange
operations because of their simplicity. This observation
supports the assumption of limited storage capacity as
source of error (Schweizer, 2000, 2001). In this case errors
resulting from the decay of information because of lack of
time or of insufficient speed are not very likely (Jensen,
1982; Salthouse, 1993).

The complexity of the structure of the relationship
between the independent and dependent latent variables is
an exciting observation since it suggests a diversity of
sources of fluid intelligence, which are associated with the
demands of a rather simple cognitive test. Similar
complexity can be observed in considering several other
cognitive tests (Neubauer & Fink, 2003; Schweizer,
1998). The constant constituent of the reaction times and
the quadratic constituent of the error scores are strong
predictors of fluid intelligence whereas the quadratic
constituent of the reaction time and the constant
constituent of the error scores are weak predictors. This
means that speed of routine perceptual and motor
processing and the limitation of capacity are rather
important sources of fluid intelligence and presumably
also of general intelligence.
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