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Abstract

A ubiquitous finding in intelligence research is that there is a substantial correlation between

working memory (WM) capacity and general (fluid) intelligence tests (e.g., [Intelligence 14 (1990)

389]). The standard explanation for this correlation is as follows: People with high WM capacity can

keep in memory many elements and are therefore good at storing subresults needed within an item. We

argue that another factor may be partly responsible for this correlation, namely, that people with a high

WM capacity can store many solution principles over items. Two experiments (with N=42 and N=52,

respectively) are conducted that validate this alternative explanation in two particular tests, the Raven

Advanced Progressive Matrices Test (RPM) [Raven, J. C. (1965). Advanced progressive matrices, set

II. New York: Psychological Corporation], and a number series test constructed by ourselves, but

resembling standard number series intelligence tests (e.g., [J Educ Psychol 75 (1983) 603]). D 2002

Elsevier Science Inc. All rights reserved.

1. Introduction

The role of working memory (WM) capacity is an important issue in intelligence research.

Many authors (e.g., Babcock, 1994; Kyllonen & Christal, 1990; Larson & Saccuzzo, 1989)

obtained moderately high correlations between a number of intelligence tests and WM

capacity. A recent overview of this research from a developmental point of view is provided

in Fry and Hale (2000).
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One surprising finding is that short-term memory (STM) is separate from WM. A typical

STM task consists of trying to remember a set of elements (e.g., words, numbers). On the

other hand, a WM task consists of remembering elements while some other task (e.g.,

answering questions or solving simple arithmetic) is being performed. It turns out that (a)

STM and WM are weakly correlated; (b) STM and intelligence are weakly correlated,

whereas WM and intelligence are more strongly correlated; and (c) if the variance common

to STM and WM is partialled out, STM does not correlate with intelligence, but WM does

(e.g., Engle, Kane, & Tuholski, 1999). It is concluded by these authors that STM is a com-

ponent of WM.

A next question is then why WM and intelligence tests are related. It seems obvious that

WM capacity helps because it allows storage of information. Indeed, Conway and Engle

(1996) and Engle, Cantor, and Carullo (1992) have shown that the reason a typical WM task

(e.g., Daneman & Carpenter’s, 1980 test: see below) is correlated with intelligence tests, is

not because people with high WM are efficient in the processing component of the WM task

(and hence have time left to rehearse the words to be remembered). If this processing

efficiency is either statistically or experimentally controlled for, the correlation between WM

capacity and intelligence test performance was still substantial.

However, what kind of information storage causes the correlation between WM capacity

and intelligence test performance? This is not entirely clear and no direct tests of this problem

seem to be reported in the literature. To quote Fry and Hale (2000):

[T]he general issue of what types of information need to [be] kept accessible while engaged in

what types of reasoning remains an important topic for future research. (p. 24)

Still, some authors have made suggestions along these lines, and the following explicit

proposal was given by Carpenter, Just, and Shell (1990) in the context of the Raven

Advanced Progressive Matrices Test (RPM; Raven, 1965) (see also Embretson, 1995;

Wickelgren, 1997). In every item of the test, a number of (different) (sub)results have to be

found and applied. This implies that a few subresults have to be stored during the period

that the item is being solved. Persons with a large WM capacity can store more partial

results and, hence, will have a higher probability of solving an item (see Carpenter et al.’s,

1990 ‘‘goal management’’ factor). Therefore, WM capacity and RPM performance are

positively correlated. A similar claim was made by Just and Carpenter (1992) in the context

of sentence comprehension: People with high WM capacity will be good in storing the re-

sults of parsings of early parts of a sentence, allowing them to obtain a correct interpreta-

tion when the end of the sentence is reached. Many authors seem to either explicitly or

implicitly adhere to a view similar to this one. For example, O’Reilly, Braver, and Cohen

(1999) write:

Typically, complex tasks involve the temporally extended coordination of multiple steps of

processing, often in novel combinations and situations, and the storage of intermediate

products of computation, subgoals, and so on. Active memory together with the controlled

encoding and retrieval of [hippocampal] memories can be used to retain the intermediate

results of these processing steps for subsequent use. (p. 402)
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A similar claim is made by Shah and Miyake (1996):

Comprehending a complex sentence, mentally rotating an unfamiliar geometric figure, and

solving a difficult reasoning problem, for example, all critically hinge on the person’s ability

to store various intermediate products of a computation while simultaneously processing new

information. (p. 4)

These two quotes are consistent with the idea that WM capacity is needed to store and

manipulate temporary subresults while solving an item of an intelligence test.

We do not wish to call this idea into question, but we suspect that there may be more to WM

capacity than just storing partial results per item. Specifically, we propose that people with a

high WM capacity will be better in storing rules or solution principles over items. We think of

WM as a pool of resources that can be assigned to different elements in memory, thereby

making them active and available for processing. Over time, the activation ‘‘leaks’’ and the

memory elements become inactivated (see Cantor and Engle, 1993; Just and Carpenter, 1992

for similar views). If a high amount of WM is available, decay of available, earlier used

elements will be slow (or slowly reach a fixed point), so once a useful rule or solution principle

is found, people with highWM capacity will have a higher probability of retaining the (correct)

rule on subsequent items and, hence, will have a higher probability of solving the item.

So, a second reason (apart from Carpenter et al.’s, 1990) why WM and RPM are correlated,

we hypothesize, is that rules (possible solution principles) are retained over items. This

prediction is in line with the result of Ferrara, Brown, and Campione (1986), who found that the

number of hints a child needs in order to solve a set of related items is strongly related to her IQ

score (on a different test). Another relevant result is that of Carlstedt, Gustafsson, and

Ullstadius (2000). These authors administered an intelligence test with three types of items:

Groups (find the odd-one-out in a sequence of five figures), Series (complete a sequence of

four figures), and Bongard (find a feature connecting a set of figures; see Carlstedt et al., 2000

for more details). There were two experimental conditions. In the first condition, all similar

items (of the same format) were presented consecutively (the homogeneous condition); in the

second condition, items of different formats were alternated (the heterogeneous condition).

Otherwise, the two tests contained exactly the same items. What they found, to their surprise,

was that the homogeneous test had higher loadings on a general intelligence factor (constructed

from marker intelligence tests) than the heterogeneous test. This was interpreted by the authors

as indicating that, in homogeneous tests, people can profit from the rules, or solution strategies,

they have used before, and thus a learning factor may appear. Since the same factor presumable

appears in other intelligence tests, the homogeneous test and the (marker) intelligence tests

show a higher correlation than the heterogeneous test and the marker intelligence tests. Both

Ferrara et al.’s and Carlstedt et al.’s results take up the issue of intelligence as profiting from

earlier items. We will come back to this link in the General Discussion section.

Note that the current proposal implies two things: First, people use the same rules

throughout the test and become ‘‘primed’’ to use these rules. Second, the amount of priming

is a factor of individual differences related to WM capacity.

What we will do in two experiments is construct intelligence tests (adapted versions of the

RPM and a number series test, in Experiments 1 and 2, respectively) in which the number of
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subresults to be stored within an item is relatively low in comparison with similar tests as, for

example, the original RPM test. However, solution rules still need to be remembered over

items. If WM only helps in storing subresults within an item, the standard account would

predict that the correlation with WM capacity drops substantively in comparison with the

correlation between WM capacity and standard intelligence tests. This is because the WM

requirements within an item are now low, such that they can be fulfilled by any WM capacity

within a reasonable range (our sample consists exclusively of students, who can be presumed

to have WM capacities that are not extremely low). Therefore, since the range of performance

in storing results within an item is strongly reduced, the correlation with WM capacity should

be reduced. On the other hand, we would predict that the correlation does not decrease, since

subresults still need to be stored over items, just as in, for example, the standard RPM test.

We will also check whether people indeed become primed to use the same solution

principles over different items, as implicated by our hypothesis. This will be done by creating

two conditions, in each of which different solution principles are used in an earlier phase. The

question is then whether people who have seen items obeying one particular rule will be

better on such items governed by that rule than people who have not seen this rule earlier (in

Experiment 2), or have seen them a longer time ago (in Experiment 1).

2. Experiment 1

One intelligence test that is intensively used in intelligence research is the RPM. Different

authors (e.g., Carpenter et al., 1990; Larson and Saccuzzo, 1989) have found correlations

between performance on this test and WM capacity. Moreover, some authors have suggested

that the RPM is the penultimate test to measure fluid intelligence (e.g., Marshalek, Lohman,

& Snow, 1983).

In the present experiment, an adapted RPM test is administered to a group of participants

(the adaptation we make is discussed in the next paragraph). Participants are divided in two

conditions. People in each condition are given the same set of items, but in a different order.

There are items of four rule types; each item can be solved by one (and only one) of these rules.

In Condition 1, items of one type are presented one after the other and items of the remaining

three types are presented intermixed. In Condition 2, the same set of items is presented but in a

different order. Again items of one rule type (a different one) are presented one after the other,

and the remaining ones are presented intermixed. According to our hypothesis, if people hold

solution principles in WM, and the activation of these principles decays over time, people in

each condition should find the items of the type that is presented consecutively easier than

people who see these items intermixed between items of other rule types. Hence, we predict an

interaction between condition and item type in response accuracy.

Most important, however, we investigate the relation between WM capacity and RPM

performance. The WM test we use is constructed based on a popular test, namely, the WM

span test developed by Daneman and Carpenter (1980). A recent review of the test and its use

is given by Daneman and Merikle (1996). In their test, a set of sentences is presented to the

participant; she is required to remember the last word of every sentence. The number of
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sentences for which a participant can reliably remember all (or almost all) last words is her

WM capacity. The idea is that, in a WM task, one should both remember and process

elements at the same time (Just & Carpenter, 1992). We do not wish to assume that WM is a

general (i.e., not domain-specific) factor. Therefore, we devise a WM test that is specific to

the object/geometrical domain (see Smith & Jonides, 1997 for an overview of the evidence

that object and verbal WM are separate systems; also Shah and Miyake, 1996). Nevertheless,

the test should be as close as possible to the original Daneman and Carpenter (1980) test.

How this is accomplished is detailed in the Method section.

Further, in our adapted RPM test, the amount of WM capacity required is held very low

(within items). The traditional (e.g., Carpenter et al.’s, 1990) prediction would be that the

correlation between RPM and WM drops strongly, since there are very few subresults to be

stored within an (RPM) item. On the other hand, our prediction would be that, while the

correlation may be dampened, it should still be substantial.

2.1. Method

2.1.1. Participants

N=42 persons participated in the experiment, n=19 in Condition 1, n=23 in Condi-

tion 2. All were first-year psychology students from the K.U. Leuven who participated for

course credit.

2.1.2. RPM test

The first test is an adaptation of the RPM. A typical item is presented in Fig. 1. Participants

are instructed to complete the matrix with one of the eight response alternatives in the lower

part according to a logical rule. Only one rule is needed per item, with only one, or a few, rule

instantiations (rule tokens) per item, where the number of rule instantiations refers to the

number of times that a particular rule is used within an item. For example, if one rule is used

twice in an item, there would be one rule and two rule instantiations involved in this item.

This is in contrast with the real RPM, where many (up to five) rules should be used to solve

an item. The test is presented on a computer. A response is chosen by clicking with a mouse

pointer at one of the eight alternatives.

Four types of rules are used. The rules are chosen on the basis of the Carpenter et al. (1990)

rule system, but in such a way that the rules are conceptually as different as possible. The

resulting rules are rotation, progression, unique/common, and distribution of 3. There were 4

items of type rotation, 6 of type progression, 5 of item type unique/common, and 5 of item

type distribution of 3, making 20 items altogether. The rotation rule entails that a figure is

rotating over the different columns of the matrix. The second rule, progression, means that

there is a steady progression (ascending or descending) in the number of elements; for

example, the first figure of the matrix may contain one square, the second one two squares and

the third one three. Unique/common captures two rules (which are aggregated because they

are similar). ‘‘Unique’’ means the following: Element 3 is a combination of the previous two,

in such a way that only the unique parts of Elements 1 and 2 are retained in the third element.

The example of Fig. 1 is a ‘‘unique’’ item. The ‘‘common’’ rule is the opposite: Here, the
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common (i.e., nonunique) parts of Elements 1 and 2 are retained in Element 3. Finally,

distribution of 3 is the rule where the same three figures are used in every row (but possibly in

a different order). For example, the first row may consist of the elements ‘‘circle–square–

triangle,’’ the second one of the elements ‘‘square–triangle–circle’’ (i.e., the same elements in

a different order), and the third one of the elements ‘‘circle–triangle–square.’’

As noted, we have tried to construct items where the WM requirements within an item are

low. To check this, two observers were asked to score all items on a scale ranging from 0

(very low WM capacity required) to 10 (very high WM capacity required). The mean score

(over items and observers) was 3.60, which suggests that we succeeded in our intention.

2.1.3. WM test

This is also a computerized test. Two series of five items are presented like the one

in Fig. 2. Two principles are used to construct the items: Figures become bigger (as in the

example in Fig. 2) and figures become darker. Participants are requested to complete

the series: They are given four answer possibilities and are requested to choose one by

clicking on it with a mouse pointer (see Fig. 2). This is clearly very easy; its difficulty is

comparable to the process of reading a sentence, as is required in Daneman and Carpenter’s

(1980) task.

Also, participants should remember the last figure of every series, that is, the last figure

before the question mark. (In the example of Fig. 2, they should remember the moderately

Fig. 1. An item of the adapted RPM task.
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large circle.) This last process is comparable to remembering the last word of every sentence

as is required in Daneman and Carpenter’s (1980) task.

After each series of five such items, a recognition test is given. In this recognition test, 10

figures are shown sequentially, and the participant is asked whether the figure is in her

remembered list or not (the participant should click a ‘‘Yes’’ or ‘‘No’’ button). Only 4 out of

10 items per recognition test refer to items seen earlier (i.e., to only 4 items, the answer should

be ‘‘Yes’’). The other 6 are filler items and do not correspond to items seen previously.

Since we assume WM capacity to put a limit on the number of items that can be

remembered, it seems plausible that remembering one item has a serious impact on

remembering other items. Indeed, concentrating attention on one particular item probably

limits the extent to which other items can be attended to. Hence, there probably are item

dependencies in this test, thus violating the statistical independence assumption of classical

test theory (we return to this point later).

2.1.4. Procedure

Participants enter the experiment room and are seated in front of a Pentium computer. They

are requested to guide themselves through the introduction to the WM test by clicking the

mouse button. After the introduction, there is time to ask questions concerning the testing

procedure. If everything is clear, the participant is left alone to perform the WM test. After the

WM test, the experimenter enters the room again, and the same procedure is repeated for the

RPM test.

2.2. Design and predictions

Two conditions are created. In the first condition, all items of type distribution of 3 are

presented immediately following each other. Specifically, these items are presented as numbers

16, 17, 18, 19, and 20. Other types of items (e.g., progression items) are presented with gaps of

1 to 4, meaning that 1, 2, 3, or 4 items of other types appear between two consecutive items of a

certain type. In Condition 2, items of type unique/common are presented as the items 16 to 20;

Fig. 2. An item of the WM task.

T. Verguts, P. De Boeck / Learning and Individual Differences 13 (2002) 37–55 43



the distribution of 3 and unique/common item numbers of Condition 1 are simply replaced

with one another. If rules are used and retained (in a gradually decaying manner) throughout

the test, then participants in Condition 1 should find distribution of 3 items easier than

participants in Condition 2 do; the reverse is predicted for unique/common items. The reason

for this prediction is that when items of the same type follow each other, it is easier to retain the

corresponding rule. Intervening items (items of other types) may interfere with retention of a

specific rule. Hence, we predict an interaction effect between condition (1, 2) and rule type

(distribution of 3, unique/common) with accuracy as the dependent variable.

The second and most important prediction we make is that the correlation between the WM

score and the RPM score is significantly larger than zero, and similar to comparable

correlations reported in the literature. This prediction is the most important because it directly

contrasts the two views on the role of WM capacity. Indeed, in the traditional view, WM and

RPM scores are correlated because many subresults should be stored within an item. Hence,

for a reasoning test with very few rule instantiations (like the one of the present paper), the

correlation should drop to zero according to the traditional view. On the other hand, since

solution principles still need to be remembered over items, we would predict that the

correlation remains substantial.

2.3. Results

2.3.1. Descriptive measures

The mean and standard deviation of the adapted RPM test are 13.93 and 2.72, respectively.

The Spearman–Brown corrected split-half reliability equals .68.

For the WM test, the mean and standard deviation are 14.14 and 2.02, respectively. The

Spearman-Brown corrected split-half reliability equals .22. This is low, but it should be noted

that reliability is not a useful measure in the present context (see Appendix A). We view WM

as a limited, person-specific capacity (‘‘resource pool’’) that can be used to store and process

items (Just & Carpenter, 1992). Therefore, if a person concentrates on the first set of items,

she will have less WM available for storing the remaining items. Similarly, one person may

choose to concentrate attention on the square elements only, or the dark elements only, or

maybe a random subset of items, since storing all items is too difficult. This would result in

negative interdependencies between items, violating the assumptions of classical test theory1

and making the concept of reliability less useful.

1 In fact, interitem correlations range from �.49 to .53 with a mean of .02 in our data. However, it is difficult

to describe the exact pattern of item interdependencies, since each person may follow his or her own idiosyncratic

strategy to store items. If negative interdependencies occur, the standard assumption of classical test theory (error

correlates only with itself, Lord & Novick, 1968, p. 56), no longer holds. Therefore, the classical result that

validity is lower than the root of the test’s reliability (e.g., Lord & Novick, 1968, p. 69) should no longer hold. In

fact, it is possible that the test’s estimate of reliability is zero or negative and the validity of the test is high. We

illustrate this phenomenon in Appendix A with a simulation study. For a similar reason, low reliabilities are

typically obtained in the TAT test (Atkinson, Bongort, & Price, 1977; Reuman, 1982; Tuerlinckx, De Boeck, &

Lens, 2002).
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2.3.2. WM–RPM correlation

The correlations between the total WM score and RPM score for each condition separately

and over both conditions are reported in the third row of Table 1 (one-sided P values are

shown within parentheses). As can be seen, these correlations are moderately high and

statistically significant.

As may be recalled, in the recollection phase of the WM test, the participant is to respond

‘‘Yes’’ to some figures shown there (meaning, ‘‘Yes, I have seen this figure earlier in the

test’’). These items seem to be the most relevant items in the WM score, since they refer to

figures that are to be remembered by the participant (whereas the other items contain figures

that the participant has not seen). If only these ‘‘positive’’ items are incorporated into the WM

score, Table 1 (fourth row; positive item score) shows that the correlation increases.

We now compare these correlations with correlations obtained in similar settings reported

in the literature. Only correlations between WM tests and the advanced RPM test (on which

our own test is based), administered on comparable populations (university students) are

mentioned here. These are .50, .55, .59, and .77, reported by Larson, Merritt, and Williams

(1988), Larson and Saccuzzo (1989), Babcock (1994), and Carpenter et al. (1990),

respectively. Hence, the correlations we find are of a magnitude similar to comparable

correlations reported in the literature.

2.4. Experimental effect

The Condition�Item Type mean proportions correct are given in Table 2. One can see

that, as expected, people in Condition 1 are better on distribution of 3 items (relative to

Condition 2), while people in Condition 2 are better on unique/common items (relative to

Condition 1). However, the interaction is only marginally significant at level .05, F(1,40)=

3.17, P=.08.

Table 1

Correlations between WM capacity and RPM test, and between WM capacity and number series test for

Experiments 1 and 2, respectively (one-sided P values within parentheses)

Condition 1 Condition 2 All participants

Experiment 1

Total WM score .54 (.009) .44 (.019) .47 (<.001)

Positive item score .61 (.003) .51 (.007) .54 (<.001)

Experiment 2 .58 (.001) .44 (.010) .50 (<.001)

Table 2

Condition�Group data, Experiment 1

Unique/common items Distribution of three items

Condition 1 .58 .56

Condition 2 .70 .51
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2.5. Discussion

We have succeeded in finding a correlation between WM capacity and an intelligence test

with low within-item WM requirements. However, some aspects of our design were not

optimal. Our WM procedure may have been problematic in that the correctness on the series

completion multiple choice question was not taken into account. This is a problem because

some people may have chosen not to pay attention to the question and simply remember the

figure, thus boosting their WM score (Salthouse, 1991). However, because the answers to

these questions were not recorded, this could not be checked.

We also note that the reliabilities were low (for both tests, although the problem was most

pronounced for the WM test). One possible reason was already mentioned earlier for the WM

test (negative item dependencies). Another possible reason could have been that both tests

were rather short.

One other problem with our results is that, although the interaction was in the expected

direction, it was not statistically significant. Two possible problems that may have caused this

are the following. First, the items we used may have allowed different ways of solving the

items correctly. Hence, people may have been solving the items in ways other than we

intended them to do, possibly weakening the amount of relevant solution rule priming.

Second, since different people solve a different number of items correctly, it is difficult to

control the exact amount of priming each participant receives. To replicate our findings in

another domain and avoid the problems noted here, the second experiment is now presented.

3. Experiment 2

A second type of task that is often used in intelligence research is a number series task

(e.g., Carlstedt et al., 2000; Holzman, Pellegrino, & Glaser, 1983; Lefevre and Bisanz, 1986).

In this experiment, we administer two tasks, a verbal WM task and a number series task. In

the latter, participants are shown number series of the form ‘‘3 5 7 9 11 13’’ and are instructed

to find the rule describing the series. The number series always consists of six numbers. Four

solution rules are used: addition, Fibonacci, interpolation, and multiplication. An example of

the addition type is ‘‘3 4 6 9 13 18.’’ Here, the increment between two consecutive items is

itself incremented by one (so, the sequence of increments is +1, +2, +3, +4, +5). The

increment between two successive increments is always equal to one, but items can differ in

starting number and initial increment. In items of the Fibonacci type, each number is the sum

of the previous two. The first two numbers are chosen arbitrarily, with the second number

larger than the first. An example is ‘‘2 4 6 10 16 26.’’ In items of the interpolation type, two

sequences are intermixed, each one with a constant increment rule. An example is ‘‘2 5 6 8 10

11,’’ which is a mix of the sequences ‘‘2 6 10 . . .’’ and ‘‘5 8 11 . . ..’’ In items of the

multiplication type, the increment is always multiplied by a constant value. An example is ‘‘1

3 7 15 31 63.’’ The multiplier is always equal to 2.

These rules are not unique and in fact, an infinite number of rules can validly describe each

item (Korossy, 1998). However, we believe these four rules to be the simplest ones that
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adequately describe the items. Since we asked participants to describe the rule that they used

in this task (rather than complete the series in a logical manner, which is the standard

procedure; see Method section below), it is possible to investigate this. It turned out that none

of our participants ever used a valid rule other than the ones mentioned here.

As in the previous experiment, the number of WM requirements within an item was low.

This can be justified on the basis of two aspects of the current task: A low number of

placekeepers (to be explained in a moment) is required within an item, and no application of

the rule that was found is needed. Each aspect will now be discussed consecutively. First,

Holzman et al. (1983) introduced a measure of WM requirement within number series items,

namely, the number of placekeepers an item requires. This refers to the number of variables

needed to describe the rule involved in the item. This number can be assessed in a relatively

straightforward manner. Holzman et al. devised a formal coding system for this type of rules:

The number of variables that is required within this system to describe a rule can be treated as

the number of placekeepers. For example, the addition rule could be described in their system

as [M1, +N1(M1), +1(N1)], meaning ‘‘start with M1, add N1 to M1, add 1 to N1,’’ and thus

requires two placekeepers (M1 and N1). Holzman et al. devised rules where 0, 1, 2, or 3

placekeepers were required. They found that the number of placekeepers that is required is a

strong predictor of item difficulty: The authors report, for different subject groups,

correlations between number of placekeepers and item difficulty above .70.

Each of our four rules (addition, Fibonacci, interpolation, and multiplication) can be des-

cribed in Holzman et al.’s (1983) system as a rule where exactly two placekeepers are required.

In our opinion, this is as low as possible without making the item extremely easy: Items with 0

or 1 placekeepers are very easy and, thus, pose no challenge (e.g., typical items with 0 or 1

placekeepers would be ‘‘3 3 3 3 3 3’’. . . and ‘‘3 5 7 9 11 13,’’ respectively). This is the first

reason why we assume that the WM load within an item is low in our newly constructed test.

A second reason is that part of the WM load in solving number series items results from

correctly applying the rule that is found. Since this requirement is no longer imposed (people

have to state the rule they are using, rather than actually applying it), this source of memory

load is removed. Hence, we think we have succeeded in again making the WM requirements

within an item as low as possible. Further evidence for this assertion will be presented in the

Results section (subsection Number size), where we look at the effect of the size of the

numbers that participants have to operate with while finding the correct rule.

3.1. Method

3.1.1. Participants

Fifty-five people participated, either for course credit or a small monetary reward. Of these,

27 participated in Condition 1, 28 in Condition 2. They were first-year psychology students

receiving credit for their participation.

3.1.2. Procedure

Two tasks are administered, with about 1 week in between. The first task is a close

analogue of the WM task described by Shah and Miyake (1996) (which is itself an adaptation
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of the WM task of Daneman & Carpenter, 1980). Since the intelligence test used is no longer

geometric but verbal/quantitative in this experiment, a verbal version of the WM task will

now be administered (see Oberauer, Süß, Schulze, Wilhelm, & Wittmann, 2000, for evidence

that verbal and quantitative information tap the same WM source). Specifically, in this task, a

sentence is presented on the screen, which has to be judged to be correct or incorrect. The

level of difficulty of judging a sentence is very low. For example, a correct sentence is

‘‘Robert de Niro is an actor.’’ An incorrect sentence is ‘‘Cancer is caused by kissing.’’ After

this sentence, a word is presented for 800 milliseconds: This is the word that participants are

instructed to remember. After n such sentences, participants are required to write down all

words they have remembered. The number n increases throughout the test. First, five items

with n=2 are presented, then five items with n=3, and so on, up to n=5. Hence, to obtain a

perfect score, the participant should remember 5�(2+3+4+5)=70 words (but not, of course,

all at once). All words to be remembered are two-syllable nouns. Every participant completed

all items of this test.

In the WM task, a word is scored as correct if it is recalled and the sentence preceding that

word is answered correctly and in time. The time limit to judge the correctness of a sentence

is 5 seconds. The rationale for requiring the corresponding sentence to be correct, is that

otherwise people can simply remember the words without paying attention to the sentences

(see Discussion, Experiment 1). The rationale for requiring that the sentence be answered in

time is that otherwise people can take time to internally rehearse the words to be remembered.

If people would pay no attention to the sentence, or would internally rehearse the words, our

task would become an STM task, rather than a WM task (see discussion earlier). By

correcting the WM score with the answer to the sentences, we try to make sure that the task is

a real WM task rather than an STM task (see also Salthouse, 1991). People are informed that

they have to answer fast, and they are given a warning sign on every sentence on which they

are too slow.

Concerning the number series task, a test of 50 items is constructed, with items of the four

types intermixed. This test is presented twice in identical order. Hence, 100 items are presented.

The different rule types are introduced gradually. In items 1 to 10, the addition and Fibonacci

rules are used. In items 11 to 20, the interpolation rule is added to these two. In items 21 to 30,

the addition and interpolation rules are used. In items 31 to 40, the multiplication rule is added

to these two. Finally, in items 41 to 50 all four rule types are used. The exact same sequence is

repeated for items 51–100. In total, there are 34, 24, 28, and 14 items for types addition,

Fibonacci, interpolation, and multiplication, respectively. Since some people did not complete

the number series test (because one hour had passed), the number series score is defined as the

number of successes divided by the number of items attempted.

A time limit of 25 seconds per item is imposed in the number series task. Participants

worked until either the task was completed or one hour had passed, whichever came first.

3.2. Design and predictions

Two conditions are created, differing only in the explanation that is given in the

introduction to the number series test. In the first condition, rule interpolation is shortly
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explained in the introduction of the test. In the second condition, rule multiplication is shortly

explained in the introduction. We predict people in Condition 1 to be relatively better on

interpolation items, and participants in Condition 2 to be relatively better on multiplication

items. Hence, we predict an interaction between condition and item type (interpolation,

multiplication) with accuracy as the dependent variable. For the correlational effect, the

prediction is similar to Experiment 1.

3.3. Results

One person was removed from Condition 1 since no number series data were collected for

this person. Two persons were removed from Condition 2, one because the WM task was

incorrectly filled in, and one because the number series test was incorrectly filled in.

3.3.1. Descriptive measures

For the number series test, the mean accuracy is .65 with standard deviation .13 (the test

score is rescaled here to a 0–1 scale because not every participant attempted the same number

of items; see earlier). The Spearman–Brown corrected split-half reliability equals .75.

For the WM test, the mean and standard deviation are 56.35 and 7.14, respectively. The

Spearman–Brown corrected split-half reliability equals .82.

3.3.2. Correlations

We first investigate whether there is a correlation between the WM score and the number

series score. The seventh row of Table 1 shows the correlations between the WM score and

number series score, separately for every condition. For example, in Condition 1, the

correlation of the WM score with total number series score equals .58. Within parentheses,

we display one-sided P values. This table shows that there is a reasonably strong correlation

between the WM score and the number series score. It can be noted that the correlations are in

line with the ones obtained in Experiment 1, and also with other correlations reported in the

literature (see earlier references and Kyllonen & Christal, 1990, p. 403).

3.3.3. Experimental effects

We now turn to the effect of hints in the introduction of the test. Table 3 shows mean

accuracies separately for each solution principle and for all four types aggregated (column

‘‘Total’’). The results are reported per condition. Standard deviations are shown within

parentheses. It can be seen that the experimental manipulation (prior experience) is

Table 3

Mean accuracies (standard deviations within parentheses) per item type and condition in the number series task,

Experiment 2

Total Addition Fibonacci Interpolation Multiplication

All items

Condition 1 .67 (.16) .87 (.14) .75 (.22) .40 (.38) .58 (.27)

Condition 2 .62 (.10) .92 (.07) .75 (.21) .07 (.19) .72 (.22)

T. Verguts, P. De Boeck / Learning and Individual Differences 13 (2002) 37–55 49



successful: Accuracies on items of rule interpolation are higher in Condition 1 than in

Condition 2. The reverse holds for items of rule multiplication. Hence, the expected

interaction is found. Taking only the results of items of types interpolation and multiplication

(the ones that are of primary interest), we find a main effect of rule type, F(1,50)=67.15,

P<.001, and the expected interaction, F(1,50)=19.30, P<.001.

On the other hand, rules that are not presented in the introduction (addition, Fibonacci), are

not influenced by the experimental manipulation. There is a significant effect of item type, in

that the addition rule is easier than the Fibonacci rule, F(1,50)=33.34, P<.001, but neither the

condition nor the interaction effect are significant (both Ps > .2).

3.3.4. Number size

One might object that another source of difficulty in solving these items is the size of the

numbers that are used in a number series item. Hence, items may be difficult (WM-

dependent) because they require juggling with large numbers. To test this, we define low-

number items as items where the sum of the numbers used in that item is smaller than the

mean sum of numbers (e.g., for ‘‘1 2 4 7 11,’’ the sum equals 1+2+4+7+11=25) for the rule

class (e.g., Fibonacci) to which the item belongs. Analogously, define high-number items to

be items where the sum is higher than this mean. Then, if this alternative account is correct,

and high-number items require more WM resources than low-number items, low-number

items should be easier than high-number items. Table 4 displays the mean accuracies of both

low-number and high-number items for the four item types. There is no consistent effect of

low-number items being easier found here, contradicting this number size account.

3.4. Discussion

As before, we obtained a strong correlation between WM capacity and the cognitive task

(in this case, number series), although we have argued that WM requirements within an item

were low. The reasons were that (a) only two placekeepers were required within an item, and

(b) the rule found by a participant did not have to be applied to generate new numbers of the

series. Further, it turned out that the size of the numbers within an item did not influence the

Table 4

Accuracies for low-number and high-number items, Experiment 2

Condition 1 Condition 2

Addition low .87 .92

high .88 .93

Fibonacci low .78 .79

high .73 .70

Interpolation low .38 .07

high .41 .07

Multiplication low .58 .72

high .83a .72

low=low-number items; high=high-number items.
a One person not included since no high-number multiplication items were attempted.
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difficulty of the item. Finally, in contrast to the previous experiment, the experimental

interaction was statistically significant.

4. General discussion

It was shown that, for the RPM test, individual differences in WM are relevant also if the

WM load per item is low. The same pattern was found in a number series test that was very

similar to tests commonly used in the literature. The correlations we obtained were of

comparable magnitude to correlations reported in the literature. It was suggested that the

reason for this correlation is that persons with high WM capacity are more efficient in storing

rules over items than are persons with low WM capacity.

A recent view on WM is that it consists of the activated portion of long-term memory

elements (e.g., Cantor and Engle, 1993; Engle et al., 1999; Just & Carpenter, 1992). We

adhere to this view, and applied it in this paper to the relation between WM capacity and

intelligence by noting that elements can become activated during problem solving not only

within, but also between items. As noted in the Introduction, recent research that is consistent

with our view is that of Carlstedt et al. (2000). These authors found that the involvement of

general intelligence is higher for homogeneous tests than it is for heterogeneous tests; that is,

tests in which items of a particular rule type are grouped in the test (homogeneous tests)

correlate more highly with general intelligence than tests in which items adhering to different

solution principles are randomly intermixed (heterogeneous tests). As suggested by Carlstedt

et al., this may be because the relevant rules are activated over items in homogeneous tests,

but not in heterogeneous ones. Of course, our tests also used the intermixed (heterogeneous)

format, but the crucial thing is not so much whether a test is homogeneous versus

heterogeneous, but rather whether WM differences can lead to different levels of rule

retention (and hence to differences in performance). In this sense, our test (and interpretation)

is similar to theirs.

This brings us to a link between two popular concepts in modern intelligence research,

namely learning and WM capacity. Early negative findings by Woodrow (1946) seem to have

discouraged later researchers from further investigating the relationship between learning and

intelligence. However, many authors have noted problematic aspects of Woodrow’s invest-

igation, notably (a) the use of gain scores to assess learning, which have problematic

psychometric properties (Ackerman, 1987; Cronbach & Furby, 1970), (b) not taking into

account the initial level of performance (Ackerman, 1987), and (c) the use of very simple

tasks to assess learning potential (Ferrara et al., 1986).

Interest in the relationship between learning and intelligence has recently revived, and gain

scores for assessing learning have been abandoned in favor of other measures that circumvent

their problems (e.g., Embretson, 1991; Ferrara et al., 1986; Ferretti and Butterfield, 1992).

Also, the work of Ackerman (1987, 1988) has been concerned with the link between learning

and intelligence, in which he investigates sources of variance at different time points during

skill acquisition. Although we have not explicitly studied learning as a source of individual

differences, we did study WM capacity and interpreted the role of WM capacity in the present
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context as the capacity to remember solution rules over items. In this sense, we have

indirectly reconfirmed the link between intelligence and learning.

In our opinion, this view on the mutual relationships between these three concepts (WM

capacity, learning, intelligence) can also elucidate the process of how people solve

intelligence tests. One suggestion made by the present research is that an overlooked aspect

of the process of solving intelligence tests, is that the same rules are used repeatedly over

items. This process was already studied in more detail by Verguts, Maris, and De Boeck (in

press), and the present paper looked at this process from the point of view of individual

differences. Examining just how important it is relative to other sources of individual

differences stands out as an issue of future research.
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Appendix A.

We will show that low reliabilities do not necessarily imply low validities if classical test

theory assumptions are violated. SupposeWpi denotes the test score of person p on item i. The

second test score, which is used to validate the first one, is denoted T. Person p achieves a

total score of Tp on this second test. We assume that the same true score, or latent ability, qp
generates both W and T scores. That is, we assume Wpi=qp+Cpi+epi, and Tp=qp+e

0
p. The

variables epi and e 0p are assumed to be normally distributed with mean 0 and standard

deviation 1 and do not correlate with any other variable (other than with itself). The variable

Cpi is used to introduce negative item interdependencies between the discrepancies Wpi�qp.
If all Cpi=0, the standard classical test theory assumptions hold (Lord & Novick, 1968, p. 56).

If some Cpi 6¼0 but
P

i Cpi ¼ 0 for all p, the reliability of the test scores W is affected but the

validity is not.

Suppose there are 100 persons (N=100), 20 items (I=20) and latent abilities are sampled

from a normal distribution with mean 0 and a standard deviation of 3 (q�N (0, 9)). Further,

suppose everyone concentrates either on the first part of the test (the first 10 items) or the

second part of the test (the last 10 items). This can be formalized as follows. For persons con-

centrating on the first part of the test, Cp1=Cp2= . . .=Cp10=C>0, while Cp11=Cp12= . . .=
Cp20=�C<0. The probability of concentrating on the first or the second part is equal to .50.

Simulation results for different values of C are presented in Table A1. We show, for different

values of C, the correlation (reliability estimate) between Parts 1 and 2 of the test (r(Wpart1,

Wpart2)), and between the even and odd parts of the test, the even part corresponding to the

items 2, 4, 6 and so on, the odd part to the items 1, 3, 5 and so on. The results show that, if

C=0, validity (r(W, T)) is lower than the root of the reliability, as it should be. (Table A1 shows

T. Verguts, P. De Boeck / Learning and Individual Differences 13 (2002) 37–5552



that the validity is lower than the reliability; hence it is also lower than the root of the

reliability.) However, as soon as negative interdependencies are introduced, the reliability

dampens. The reliability based on the odd/even partition does not suffer from this effect, since

each variable used in its calculation contains items with positive and negative discrepancies

Wpi�qp. On the other hand, if the reliability is calculated based on the Part 1/Part 2 split, the

reliability decreases dramatically. This does not affect the validity of the test, as is shown in the

last column of Table A1.

For the case just discussed, one can calculate the reliability based on the odd/even partition,

and give a plausible reason why the Part 1/Part 2 split-up is inappropriate. However, even this

is not always possible, namely, when different people use different strategies to divide their

attention. To be specific, suppose that some people follow the strategy to remember odd items

(1, 3, 5, . . .), other people remember even items (2, 4, 6, . . .) and still other people make use of

one the two strategies discussed above (concentrate on Part 1 or Part 2 of the test). The two

new C patterns are (C, �C, C, �C, . . ., �C), (�C, C, �C, C, . . ., C) for odd and even

preferences, respectively. Suppose each preference (odd, even, Part 1, Part 2) occurs with a

probability of .25. The corresponding simulation results are presented in Table A2. One may

note that the Part 1/Part 2 reliability suffers less than before (since there are fewer people

choosing the Part 1 or Part 2 strategy), but the effect is that the other reliability estimate (based

on the odd/even split) lowers as well. However, there is still no effect on the validity of the

test. These findings corroborate the statement made in the text that in a test situation like the

present one, where negative item dependencies occur, the reliability coefficient is not a very

useful measure.

Table A1

Reliability and validity, simulation results (1)

C r(Wpart1, Wpart2) r(Weven, Wodd) r(W, T)

0 .99 .99 .92

1 .81 .99 .95

2 .46 .99 .95

3 .06 .99 .95

4 �.28 .99 .95

5 �.44 .99 .94

Table A2

Reliability and validity, simulation results (2)

C r(Wpart1, Wpart2) r(Weven, Wodd) r(W, T)

0 .99 .99 .95

1 .92 .91 .97

2 .62 .68 .94

3 .39 .43 .95

4 �.01 �.01 .94

5 �.11 �.09 .95
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