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In this paper, we investigate the role of response fluency on a well-known intelligence test,

Raven's Advanced Progressive Matrices (APM) test. Finding rules that govern the items is critical

in solving this test. Finding these rules is conceptualized as sampling rules from a (statistical) rule

distribution until the correct one is attained. Response fluency is then seen as generation speed, or

the speed at which a person generates (samples) rules from this distribution. We develop a test that

isolates this speed of sampling variable, and a method to check whether this variable was

adequately isolated. The score on this test is then compared with performance on the APM test. It

is found that the speed at which people sample from such distributions is an important variable in

solving APM items.

The Advanced Progressive Matrices (APM) test has been widely used in psychological
research. Since it correlates well with many other psychometric tests (Marshalek, Lohman,
& Snow, 1983), it is often taken as a measure of g, and compared with other variables,
such as brain measures (Haier, Siegel, Tang, Abel, & Buchsbaum, 1992; Reed & Jensen,
1992), elementary cognitive tasks (Jensen, 1987; Kranzler & Jensen, 1991) or more
complex tasks (Larson, Merritt, & Williams, 1988; Larson & Saccuzzo, 1989).

The APM itself has also been the focus of some research. For example, some authors
have factor analyzed the APM and argued that a certain number of factors underlies
performance on this test (e.g., for one factor: Alderton & Larson, 1990; for two factors:
Dillon, Pohlmann, & Lohman, 1981). Embretson (1995) has applied the conjunctive
Rasch model (Embretson, 1984; Maris, 1995) to the APM and argued that working
memory capacity and general control processes constitute the two main sources of
individual differences. A detailed Raven (1962) analysis has been performed by Carpenter,
Just, and Shell (1990). Using various measures of task performance (e.g., eye movements,
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number correct scores), these authors also found two factors, which they called `̀ ability to
induce abstract relations'' and working memory capacity.

The work presented in this paper is an attempt to clarify the first of Carpenter et al.'s
(1990) factors, the ability to induce abstract relations. More specifically, we investigate the
role of response generation speed (or response fluency), a variable which, in our view, has
been relatively neglected in intelligence research. However, this idea goes back at least to
Thorndike's (1898) insight that, in order to come up with a correct response to a certain
task, one must generate a lot of possibilities; the correct one can then be retained.
Essentially the same hypothesis has been stated in an (ontogenetical) evolutionary
framework by Campbell (1956, 1960). In fact, the present theory was derived from the
same metaphor linking biology and psychology (Dewitte & Verguts, in press).

Response fluency has been empirically studied before, but usually with verbal
material (Ekstrom, French, & Harman, 1976; Janssen & De Boeck, 1997; Janssen, De
Boeck, & Vander Steene, 1996; Sincoff & Sternberg, 1987; for an overview, see Carroll,
1993), while the current research is concerned with geometrical tests. Geometrical fluency
tests have been devised by, e.g., Guilford (1956). Some of these are now part of the ETS
French kit of reference tests (Ekstrom et al., 1979).

The remainder of this paper is organized as follows. First, the generation speed
principle is described in detail, followed by a section on how the predictions derived from
this principle are tested. Then, come the Method and the Results section. We conclude by
discussing the relevance of our findings and by stating them in a broader perspective.

Generation Speed

A typical APM item is given in Fig. 1; participants are instructed to complete the lower
right-hand cell of the 3 � 3 matrix with one of the eight answer alternatives at the bottom.
They are told to find a logical rule governing the first as well as the second row of this
matrix; once found, this rule has to be applied to row three in order to complete the item.

Essentially, the thesis of this paper is that a rule generation process plays a crucial role
in solving the APM items. If (APM) rules are compared with balls in an urn, this means
that people sample balls from an urn. Individual differences in the generation process can
be thought of as sampling from different urns (qualitative differences) or at different rates
(quantitative differences). We will concentrate on the latter. Given a limited time to solve
the test, and given that the `̀ different urns effect'' is cancelled out, this implies that fast
persons (fast in the sense of generating many possible rules in a limited time) have a higher
probability to solve a particular item correctly. Usually, a 40 min time limit is given to
solve the 36 Raven items, so one has, on average, 66.7 s for each item, which is reasonably
severe. The idea that sampling and checking hypotheses plays a role in solving problems is
not new. Milward and Wickens (1974) describe a whole set of theories based on this idea.
The present paper concentrates on one such theory, applied to a specific domain (APM
items) and describes a method to test whether individual differences in rule generation
speed do indeed correlate with the APM. From introspection, it might seem that rule
generation speed is not the most important factor in solving APM items. However, we do
not claim that our hypothesis is also valid to introspective data, as the process may be
partly or wholly beyond the awareness of the participant. Furthermore, we also do not
claim that solving APM items is only but a matter of rule generation speed. What we will
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test instead is whether individual differences in rule generation speed do exist and can
be isolated in a separate generation test and whether these differences are correlated with
the APM.

A Generation Task

The APM is a complex test, in which many variables other than generation speed may
have an important influence. Separating these other variables from generation speed can be
tackled by the method of subtasks (Embretson, 1980, 1984; Sternberg, 1977). This entails
the construction of one or more tasks that are intended to measure one of the components
under study, in our case generation speed. Comparison of such a subtask and the APM will
be critical in our analysis. We have one subtask, consisting of five items, of which a typical
item is given in Fig. 2.

This (sub)task will from now on be referred to as the generation task. Participants are
asked to find a rule that might be applied to the two patterns presented. The two patterns
are to be seen as an incomplete row that in its full length consists of three patterns (as in
the APM test). Together with the rule they found, they are asked to draw the pattern
consistent with their rule, thus completing the row. Participants have to do this, for each
item, in as many ways as possible. One point is scored for every rule they found.
Therefore, participants are assigned a score theoretically between 0 and infinity for each
item. The score of each participant on this task (summed over the items) is the generation

score. It is assumed that other variables are much less important here than in the APM test.

Figure 1. Analogy item (for copyright reasons, this item is invented, but it is similar to
APM items).
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One reason is that working memory load is much lower in this test than in the APM, in
which it is an important variable of interindividual differences (Carpenter et al., 1990;
Embretson, 1995). A second reason is that it was emphasized to the participants that the
quality of the rules they generated would not be taken into account, whereas rule quality
is important in the APM test, because the solution can be found only if the correct rule
was sampled.

As noted above, we want to measure the number of rules someone can generate in a
given amount of time. The generated rules will be grouped into equivalence classes in
order to exclude the exploitation of one rule. For example, one rule in the item of Fig. 2
might be `̀ add pattern 1 and 2 to obtain pattern 3.'' Another one is `̀ take pattern 1, rotate
45 8 , and add pattern 2 to obtain pattern 3.'' These are counted as two separate rules.
However, the rule `̀ take pattern 1, rotate 90 8 , and add pattern 2 to obtain pattern 3'' is not
counted as a third rule since it is a simple variation of the second one. Interrater reliabilities
for this procedure will be discussed later in the paper.

To summarize then, we use two tasks, one of which is a complex task, the APM test,
while the second one is intended to measure generation speed only. Four hypotheses to be
tested will now be described.

(1) Hypothesis 1 is that between participants, quantitative differences exist in the
generation task. As noted before, the notion of `̀ quantitative'' in Hypothesis 1 refers to a
speed (of sampling) variable. This first hypothesis refers to the fact that reliable variance
exists in the generation test scores and is of a preliminary nature. Indeed, if this
variance is too low, one cannot expect to find any correlation between the generation
test and the APM.

(2) Hypothesis 2 is that between participants, no qualitative differences exist in the
generation task. The term `̀ qualitative'' refers to the distribution that participants are
assumed to sample from. In the urn metaphor, Hypothesis 1 describes the speed of
sampling from the urn, while Hypothesis 2 assumes that urns do not differ between
persons in the generation task. Otherwise stated, the second hypothesis refers to the fact
that all participants sample the same types of rules in the generation task; a rationale for
this assumption was given above. It is necessary that we find no, or few, qualitative
differences in the generation task, otherwise the number of rules may be confounded with
their quality, and hence the correlation between the APM and the generation test could no
longer be interpreted as support for the role of generation speed. It should be stressed that
the hypothesis of absence of qualitative differences in the generation task in no way
implies that in the APM also there are no qualitative differences. One can reasonably
assume that people do differ in the quality of rules they generate in the APM, but the
question is to what extent purely quantitative differences are important as well. However,
in order to isolate a generation speed variable, it must be guaranteed that in the generation

Figure 2. Generation task item.
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task under consideration there is no confounding of speed and quality. This is not a trivial
issue, and it is a major challenge to succeed in such an isolation of speed from quality. In
fact, the hypothesis of no qualitative differences in the generation task is far from evident,
not to say counterintuitive.

The first two hypotheses are preliminary hypotheses, in the sense that if any of these
two hypotheses turns out to be invalid, testing the other hypotheses is meaningless. For
example, if the second hypothesis turns out to be invalid, then qualitative differences do
exist in the generation task, so that obtaining a correlation between the generation task and
the APM cannot be interpreted as evidence for the role of speed-of-sampling.

(3) Hypothesis 3 states that differences in rule generation speed (as isolated in the rule
generation task) play a role in the APM. However, since the rule finding process is quite
easy in some APM items, it may be expected that the generation task cannot correlate with
items that are easy for rule finding, since it is impossible to find a correlation if one of the
variables shows hardly any variance. Therefore, the third hypothesis should be modified
slightly by saying that the generation test will only correlate with those items in which rule
finding is (moderately) difficult. We will return to this nuance in the following.

(4) Hypothesis 4 is that a rule finding dimension can be found in the APM items. If
rule finding is a process in solving APM items and if items differ with respect to this
process, then it must be possible to isolate a rule finding dimension in the APM items. As
noted before, generation speed is presumed to be an aspect of the rule finding we refer to
here. The four hypotheses will be dealt with consecutively in the following section.

Hypothesis Testing

Hypothesis One

Testing of the quantitative differences hypothesis is done using a randomized blocks
ANOVA design: each participant is treated as its own block, the five items are treated as
the experimental conditions. Contrary to usual practice, no prediction is made about the
experimental variable, but a strong effect is predicted for the blocking variable. It is useful
to note at this point the relation between this procedure and a classical way to calculate
test reliability based on ANOVA methods (Hoyt, 1941). This author presents a method to
obtain the well-known coefficient a reliability estimate. Essentially, this method boils
down to comparing total sum of squares with person and item specific sum of squares
(formally, SSt±SSp±SSi). The present procedure is the same, but we do not treat the
result as the usual coefficient a estimate, since we are (here) not interested in the
reliability of the test per se, but rather in whether reliable person variance in the
generation task can be obtained.

Hypothesis Two

To describe our testing of the second hypothesis, let us consider an arbitrary item i of the
generation task (so i = 1, . . . , 5), and, say, R responses (rules) are possible for this item (R
may vary over items). Each participant p generates a response vector

�x1; x2; . . . xzp
�;
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where zp refers to the number of rules given by participant p. The x variables may
take on a number from 1 through R, the total number of rules. The x-value
indicates which of the R rules is generated as the first one (x1), as the second one
(x2), etc., to the last response (xzp

). Quantitative differences and, hence, the values
zp, are not studied in this section. The values zp will be implicitly conditioned upon.
With each rule r, a probability ppr is associated for participant p, which gives the
probability that p will generate rule r. For the generation task, our hypothesis then
entails that

ppr � pr �p � 1; . . . ;N ; r � 1; . . . ;R� �1�

in other words, pr is constant across participants. A complication is that sampling
occurs without replacement; participants never repeat the same rule. Therefore, the

sampling probabilities are renormed after every sampling, in a way depending on the

rule sampled in the step before. Therefore, the probabilities in (1) are the sampling

probabilities only in the first step; we will refer to them as the initial probabilities.

Formally, if Xpj is the variable indicating the jth response of participant p, its

probability is written as

Prob�Xpj � k� � g�xp1; . . . ; xp� jÿ1��pk �2�

The factor g(xp1, . . . , xp( jÿ1)) is introduced to make the probabilities add to one in
every sampling round. Details concerning the precise form of g and parameter
estimation are provided in Appendices A and B. Two methods are used to test
Hypothesis Two.

The first consists of estimating the parameters p using only the Low-group, that
is, the participants scoring below the mean score per item. For each item, the mean
score is between 2 and 3, so the Low-group in each case consists of participants
giving 0, 1 or 2 rules. The High-group consists of the remaining participants (scores
above 2). Similarly, parameters are estimated using the High-group only. Notice that
participants may switch between (Low/High) groups across items. Then, per item, a
two-factor ANOVA is performed on these estimated probabilities, with Low/High
serving as the first factor and the R rules as the second (resulting in a design with 2 �
R cells, one observation per cell). Hence, we take one of the columns of the person �
item datamatrix used in Hypothesis One, sort the datapoints into the different rule
groups (1, . . . , R; constituting the columns of the new matrix) and persons in two
groups (Low/High, constituting the rows of the new matrix). The percentage of
variance explained by the rules ( = SSrules /SStot) is taken as a measure of the
adequacy of Hypothesis Two. Evidently, if the hypothesis is completely correct, then
SSrules /SStot = 1 for each item.

The second test is based on the same dichotomizing principle and is an application
of the recent Posterior Predictive Check (PPC) method in Bayesian statistics (Gelman,
Carlin, Stern, & Rubin, 1995; Gelman, Meng, & Stern, 1996; Meng, 1994;). A
complete elaboration of these principles is beyond the scope of this paper; a brief

statement is provided in Appendices A and B. Here, we suffice to mention that it
allows a very flexible way to apply test statistics to data because, contrary to the
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classical statistical paradigm, explicit reference distributions need not be derived. The
statistic we will use is of the form

T � 1ÿ SSRules

SSTot

� 1ÿ
2
PR
r�1

�p:r ÿ 1=R�2

PR
r�1

�pLr ÿ 1=R�2 � �pHr ÿ 1=R�2
�3�

in which pLr and pHr denote the proportion of times that rule r is given in the
Low- and High-group, respectively, and p.r = ( pLr + pHr)/2. The value 1/R is the
within groups as well as the between groups mean, since

P
p.r =

P
pLr =

P
pHr =

1. As mentioned before, the Low-group are those participants who achieve a score of 2 or
less on the particular item under study (of the generation task), the High-group are those
who score higher. As can be seen, the statistic (3) measures the amount of variance not
attributable to the rules in the observed response proportions. Evidently, our hypothesis
implies that the statistic T evaluated in the observed data is low (i.e., close to 0).

A main effect of the grouping (Low/High) variable is not possible since
proportions add to one. Qualitative differences between groups will show up in the
interaction term.

It is clear that, if the rule generation probabilities do not differ depending on the
number of generated rules (that is, between the Low-group and the High-group), there is
no confounding between the quantitative measure of generation and the quality of the
rules generated.

Hypothesis Three

Since generation speed is deemed to be a variable with at least some importance in the
APM, a first prediction derived from Hypothesis Three is that the generation task is
correlated with the APM.

However, for many Raven items, rule finding is very easy (i.e., the probability of
sampling the correct rule is close to 1). Hence, individual differences in generation
speed will not be visible in these items, implying a low correlation between
performance on these items and the generation score. Similarly, items with correct-
rule sampling probabilities close to 0 would not correlate with the generation score
either. The proportion of success in the APM is never below 0.27 in our data, which
implies that items of this second type are not present in the Raven test. Generation
scores will therefore be compared with two subscales of Raven items, one in which
rule finding is very easy and one in which rule finding is moderately difficult. The
differentiation of these two scales allows us to test the hypothesis more clearly: Indeed,
a correlation with scale 2 but not with scale 1 would rule out the alternative
explanation of motivation as a mediating variable (assuming that the scales have
about equal standard deviations), since motivation should not differentiate between
these two scales.

Two mutually exclusive sets of Raven items are constructed. Two external
observers are asked to rate on a 10-point scale the difficulty of finding (this is
emphasized to them) the rule in a particular item. Using these data, we construct two
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scales, the first of items with easy rule finding (items 22, 23, 24 and 26, scale 1) and
items where rule finding is relatively difficult (items 32, 33, 35 and 36, scale 2). The
two predictions of Hypothesis Three can then be stated succinctly as

corr�Generating score; Raven sum� > 0

and

corr�Generating score; scale 1� < corr�Generating score; scale 2�:
As a final point, one may question the division of items in two scales; for scale 2,
one or two items might correlate with the generation task, resulting in a high
overall correlation. On the other hand, some items of scale 1 might correlate
negatively with the generation task, thus hiding the effect of the other items. To
investigate this, correlations could be calculated for each item separately. Calculating
correlations with binary items is awkward, however, since the proportion-correct
values heavily influence the correlation. To circumvent this problem, we perform a
(univariate) logistic regression for each item of scales 1 and 2 with generation score
as a predictor.

Hypothesis Four

The fourth hypothesis concerns the APM items only, and entails that these items can
be ordered on a rule finding difficulty scale. A common method of describing
variables on an underlying dimension is to perform a factor analysis (e.g., Alderton
& Larson, 1990; Dillon et al., 1981). For APM data, this procedure is problematic
for two reasons. First, the variables involved are binary instead of continuous.
Second, if other factors (beside generation speed) are important in solving APM
items, we feel that it is more plausible that these factors cannot compensate one
another. In a factor analysis, on the other hand, high scores on one factor can correct
for low scores on other factors. A model that takes account of both problems is the
conjunctive Rasch model (Embretson, 1980; Maris, 1995), which for current purposes,
can be written as

Pr�Ypi � 1� � exp�up ÿ bi�
1� exp�up ÿ bi�

mpi; �4�

where the variable Ypi indicates the score (1/0) on APM item i for person p. The first factor
in the right hand side of Equation (4) denotes the probability that person p will find the
correct rule for item i. The variable up indicates person p's ability. The values bi denote the

rule finding difficulties for items i. Only the items which are a member of scale 1 or 2 will

be focused on here. Other items are either too easy (item numbers 1 through 20) or difficult

to classify. Therefore, if bi
(1) and bi

(2) denote the scale 1 and scale 2 item difficulties,

respectively (see Hypothesis Three), it is predicted that bi
(2) > bj

(1) for all i and j.
The second factor (mpi) denotes the probability that person p will solve the item

given that she has found the correct rule. This factor is of the same functional form as
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the first one, but since only rule finding difficulty is studied here, we will not elaborate
on this factor, that is we will not introduce a second u and b.

Method

Participants

Participants are 127 undergraduate psychology students of Leuven university who
received course credit for their participation. Of the 82% of participants of whom sex is
known (they were allowed to use an alias), 18% are male.

Procedure

In the first session, the APM test was taken, for which 40 min were allowed. One week
later came, the second session in which the generation task was administered. In the
instructions, participants are encouraged to give as many rules as possible for each item.
Here, a 20 min time limit was given. Scoring of the generation task proceeded as follows.
First, per item, all generated rules were grouped into equivalence classes (resulting in R

classes per item, see above). Of course, different persons seldom gave exactly the same
rule; everyone formulates the rules in her own way. Then, it was determined which rules
each person had given. Finally, external raters were explained the purpose of the study and
asked to determine how many rules each person had generated; this allowed calculation of
an interrater reliability score.

Results

The generation task and the APM test have a split-half reliability of 0.86 and 0.80,
respectively. The generation task has an interrater reliability of 0.90. Other reliabilities will
be mentioned throughout the text.

Hypothesis One

The ANOVA indicates clearly that participants (blocks) have a large effect ( p < 0.001).
Equivalently, we may note that coefficient a = (MSpers ÿ MSint) /MSpers = 0.796, and a
formal test (Feldt, 1965; Verhelst, 1998) indicates that correspondingly, p < 0.001.

The item (experimental) variable had virtually no effect ( p > 0.05). The rather low !2

implies that much of the variance is to be attributed to an item±person interaction,
meaning that generation speed differences between individuals also depend on the item or
that they partially reflect random variation. Nevertheless, since the blocking variable has a
strong effect, as indicated by the ANOVA analysis, one may conclude that quantitative
differences do exist between participants on the generation task. Given that a = 0.796, the
differences seem to be captured in a sufficiently reliable way.

Hypothesis Two

A second question is whether participants also differ in a qualitative manner on the
generation task. For each item, parameters are estimated using only the Low-group and
using only the High-group. Estimates for items 1 to 5 are shown in Table 1. The number of
rules varies from 16 to 32, so some rule probabilities are not shown. The probabilities not
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displayed are always close to zero (max = 0.07). Across items, rules cannot be compared.
Some rules do not appear in one of the groups; if this happens, its estimator is 0 and we
write a 0 in the corresponding cell.

The number of participants in each group is always around 60. As can be seen,
only on items 3 and 5 non-negligible differences between Low- and High-group occur.
This is reflected in the percentages of variance accounted for by the rules: These are
96%, 93%, 83%, 98% and 91%, respectively, with a mean of 92.2%. These
percentages indicate that differences between rules are far more important than pattern
differences between groups. Even for the most deviant items, the ordering of
probabilities is almost the same across groups. Since the probabilities in each group
add to one, the main group effect is zero, and the remaining differences will show up
in the group � rule interaction term. These remaining differences are of a qualitative
kind and their `̀ percentages of variance accounted for'' are the complements of the
percentages just mentioned.

Second, we perform a Bayesian PPC analysis based on the statistic T in Equation (3).
The observed values T for each item are 0.041, 0.068, 0.171, 0.044 and 0.114,
respectively, a result similar to that obtained with the previous method. For example,
both methods indicate item three to be the worst fitting item. Note, however, that
proportions accounted for by the rules are not completely similar for both methods, since
the first method is based on estimated probabilities (i.e., formula (2)) and the second on
observed proportions ( pLr and pHr).

Applying the PPC procedure results in p-values of 0.060, 0.013, 0.000, 0.174 and
0.000, for items 1 through 5, respectively, which shows that items 3 and 5 (items which
were also most deviant according to the first method) do not fit the model. Yet,
proportions of variance accounted for are high for all items. So, although the model does
not strictly fit the data, we can conclude nevertheless that response sampling probabil-
ities do not vary strongly between persons. We will come back to this result in the
following paragraphs.

Hypothesis Three

The question whether the (generation task) speed variable is relevant in the APM task,
our main research question, will now be investigated. Table 2 shows that the first

Table 1. Rule Probabilities Estimated for Low- and High-Group Separately

Rule Numbers

1 2 3 4 5 6 7 8 9 10

Item 1 Low 0.27 0.31 0.29 0.04 0.02 0.01 0.01 0.00 0.01 0.06
High 0.41 0.27 0.19 0.04 0.01 0.01 0.01 0.02 0.02 0.04

Item 2 Low 0.01 0.30 0.01 0.08 0.21 0.13 0.01 0.08 0.00 0.00
High 0.00 0.16 0.00 0.06 0.28 0.28 0.02 0.05 0.01 0.04

Item 3 Low 0.02 0.43 0.08 0.08 0.03 0.01 0.00 0.00 0.02 0.01
High 0.01 0.17 0.11 0.20 0.14 0.01 0.01 0.01 0.03 0.00

Item 4 Low 0.11 0.17 0.03 0.16 0.28 0.00 0.07 0.03 0.07 0.00
High 0.14 0.07 0.02 0.22 0.33 0.01 0.08 0.00 0.01 0.00

Item 5 Low 0.62 0.00 0.00 0.17 0.06 0.01 0.00 0.05 0.01 0.00
High 0.35 0.04 0.03 0.26 0.19 0.01 0.02 0.05 0.01 0.01
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prediction is confirmed. The correlation between the APM and the generation score is
0.428 ( p < 0.001). Concerning the second prediction, about scales 1 and 2 of the APM, it
turns out that only scale 2 correlates with the generation task, as is clear from Table 2. The
difference between 0.147 and 0.370 is significant ( p < 0.01). The two scales do not really
differ as to their variance, with standard deviations of 1.11 and 1.21, respectively, with an
equal number of items and, hence, the difference cannot be explained by a difference in
interindividual variance. Moreover, scale 2 correlates higher with the generation task than
with the other set of APM items (scale 1).

The testing of Hypothesis Two indicated that items 3 and 5 did not fit the
requirement of no qualitative differences. We therefore also present the results with
these two items excluded from the analysis. This creates a new variable, denoted
reduced generation score, and it is given in the last column of Table 2. Correlations
are slightly diminished, but the main results, however, remain valid. The shrinkage
can be explained by the lowered reliability (Cronbach's a = 0.80 and 0.68 for
generation score and reduced generation score, respectively), due to a reduction from
five to three items.

Finally, it is needed to check whether all items in one scale behave similarly with
respect to generation score; more specifically, we wish to ascertain that all items are
either related (scale 2) or not related (scale 1) to the generation score. We therefore
perform a logistic regression for each item on this variable. The regression weights and
corresponding p-values of the regression weights (slopes) for items of both scales are
given in Table 3. This Table 3 shows that all items in the scale behave appropriately,
that is, items of scale 1 are not (or weakly) related to generation score, while items of

Table 2. Task Intercorrelations

Reduced

Scale 1 Scale 2 Generation Score Generation Score

APM Score 0.624* 0.657* 0.428* 0.402*
Scale 1 0.349* 0.147 0.158
Scale 2 0.370* 0.317*
Generation Score 0.944*

*p < 0.001, two-tailed.

Table 3. Regression Weights of Generation Score on APM Items of Scales 1 and 2

APM Item Number Scale Number Regression Weight p-Value

22 1 0.029 0.529
23 1 0.057 0.309
24 1 0.069 0.118
26 1 0.047 0.269
32 2 0.094 0.035
33 2 0.206 0.000
35 2 0.086 0.049
36 2 0.081 0.092
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scale 2 are. Given that the result is consistent over items, it may be considered a
robust finding.

Hypothesis Four

The final hypothesis, then, states that the generation dimension can be identified in APM
data alone. We applied a conjunctive Rasch estimation program (Maris, Verguts, &
Tuerlinckx, 1997) to the APM data that provides us with estimated item parameters. The
item difficulty parameters b of scales 1 and 2 for the conjunctive Rasch model as
described above are given in Table 4. These results show that one of the APM
dimensions can be identified as a rule finding difficulty parameter, since all item
difficulties b are higher for scale 2 than for scale 1. That all values are negative is
not important here: The values are not to be considered weights but tresholds that are
identified only up to an additive constant.

As a conclusion then, we can state that the rule generation is an important factor in
finding rules in APM items, and that mere speed of generation, independent of the
quality of the rules one tends to generate, can explain part of the variance in the APM.
Not all variance was accounted for, since we found a second dimension as well (see
Hypothesis Four) and since the correlation of generation speed with the APM items is
far from perfect.

Discussion

In the past, solving analogy problems (like the APM items) has been the focus of a wide
array of research. One line of research has stressed the importance of working memory
capacity (e.g., Kyllonen & Christal, 1990; Mulholland, Pellegrino, & Glaser, 1980;
Simon & Kotovsky, 1963). Others have argued for the importance of metacognition or
control processes (Embretson, 1995; Sternberg, 1985). Some authors have constructed
new Raven-type items in order to facilitate model testing (Embretson, 1995; Hornke &
Habon, 1986).

Evidence for the importance of speed variables for complex tasks such as the
APM has been established also. Sternberg (1977) and Sternberg and Gardner (1983),
for example, found correlations between speed of performing elementary components
and performance on complex induction tasks. In the cognitive correlates approach,
Jensen (e.g., Jensen, 1987; Jensen & Munro, 1979; Reed & Jensen, 1991, 1992) has
extensively studied relations between complex tasks and elementary speed tasks. The

Table 4. Conjunctive Rasch Item Difficulties (One Dimension)

APM Item Number Scale Number Item Difficulty b

22 1 ÿ1.957
23 1 ÿ1.018
24 1 ÿ2.066
26 1 ÿ1.261
32 2 ÿ0.099
33 2 ÿ0.390
35 2 ÿ0.272
36 2 ÿ0.220
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book of Vernon (1987) is dedicated to the subject. The idea goes back at least to
Galton (1883).

We have hypothesized that sheer speed of sampling plays a role in finding a correct

rule and, hence, in solving APM items. The generation task that was constructed to

measure speed independently of quality, was shown to correlate with the APM and

especially with items where rule finding is important. However, speed of generation does

not seem to tell the whole story. Other variables may play a role: Participants may differ in

the quality of rules sampled in the APM, as we did not test the no-qualitative-differences

hypothesis for the APM but only for the generation test. Also, participants may differ in

the accuracy of applying generated results. This last factor is probably related to working

memory capacity which was found to be important in previous research (e.g., Embretson,

1995), as one has to keep (intermediate) generation results in mind while applying other

generation results.
That we were able to construct a test with only minor differences in the quality of

the rules generated between participants with a high generation score and participants
with a low generation score means that speed as such is an important generation
aspect. The correlation of this variable with the APM indicates that generation speed
helps the quality of the result in a complex task (with time constraints, as in most
tests) like the APM. Chances of finding a good rule do increase with generation speed
even without differences in availability of rules: Trying out more rules helps to find
the solution.

Our results cannot be interpreted as a correlation due to overall speed, given the time
constraints of the test, as the correlation was shown to be specific for items with a rule
finding challenge. This makes an explanation in terms of general speed implausible and
it supports the importance of generation speed. Carpenter et al. (1990) have identified
two processing components: ability to induce abstract relations and ability to handle
goals. Our paper focuses on the first of these: It was shown that productivity (or speed)
of sampling from a distribution of rules is correlated with rule finding and hence with the
ability to induce abstract relations. Therefore, it may be concluded that the APM

measures, among other variables, the speed at which different solutions are generated

by a testee.
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Appendix A. ML Estimation

Equation (2) can be written in the form

Prob�Xpj � k� � pk

1ÿ Pjÿ1

m�1

QR
r�1

p
I�r��xpm�
r

�A1�
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In Equation (A1), I{A}(B) is an index function defined as 1 if A = B and 0, otherwise.
A summation running from 1 through 0 is defined as 0. The denominator of Equation
(A1) sees to it that in every sampling round, the probabilities add to one. Parameters
of the model (Equation A1) are estimated according to the Maximum Likelihood (ML)
principle. A slightly modified version of the steepest ascent method is implemented to

perform the ML estimation (Gill, Murray, & Wright, 1995). To demonstrate accuracy

of estimation (technically, goodness of recovery), a small simulation study is

conducted. The number of rules generated by a person is drawn from a Poisson

distribution with rate � = 4. Number of participants is equal to 100 and number of

parameters (i.e., rule probabilities p) equals 20. The first 10 rule probabilities are set to

0.09 and the last 10 to 0.01 (so that
P

rpr = 1). Ten datasets are generated, with

person rates (from the Poisson distribution) fixed across datasets. In Table A1, we

report mean estimated values, that is,

pr: � 1

10

X10

j�1

prj

where prj denotes the jth estimate for parameter r. Furthermore, we report root mean
squared deviation (RMSD), which is defined as

RMSD �
�������������������������������������
1

10

X10

j�1

�prj ÿ pr:�2
vuut

Table A1. Simulation Study: Means and RMSDs

p Mean RMSD

0.09 0.089 0.019
0.09 0.087 0.014
0.09 0.087 0.013
0.09 0.090 0.012
0.09 0.084 0.014
0.09 0.094 0.013
0.09 0.092 0.010
0.09 0.091 0.017
0.09 0.091 0.017
0.09 0.088 0.019
0.01 0.012 0.004
0.01 0.011 0.005
0.01 0.010 0.003
0.01 0.013 0.005
0.01 0.010 0.002
0.01 0.012 0.005
0.01 0.010 0.003
0.01 0.009 0.002
0.01 0.008 0.004
0.01 0.010 0.003
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The RMSD provides an estimate of the stability of estimation across datasets. One may
note from Table 5 that both measures (mean estimate and RMSD) are satisfactory for
all parameters.

Appendix B. Bayesian and PPC Details

In the Bayesian paradigm, all parameters in the model are assumed to have a posterior

distribution given the data, denoted by p(pjdata), where p refers to the complete set of
parameters. A posterior distribution p(pjdata) for a vector of probabilities p can be
constructed as

p�p j data� / p�data j p�p�p�

where p(p) denotes the prior distribution for p. This prior is taken to be a Dirichlet distribu-
tion with all parameters equal to 1.1, which is a rather flat prior. The data part p(datajp)
has formula (A1) as its building block, and equals the likelihood function in the data.
To perform the PPC process, we sample parameters from this posterior using a
procedure called the Gibbs sampler (Gilks, Richardson, & Spiegelhalter, 1996, Chap. 1).
When the Gibbs sampler has converged (i.e., when parameter values are a true sample
from the posterior distribution), a parameter sample of size M is generated, denoted by
p1, . . . , pM. Each such set p m generates a new (replicated data set), denoted by
datarep,m. Next, we evaluate the statistic T in each replicated data set, denoted T rep,m, and
we compute the same statistic T as a function of the observed data, denoted T obs.
Finally, we compare the proportion of times that T rep,m � T obs, m = 1, . . . , M. This
proportion is our (Bayesian) p-value. Low proportions indicate that T obs is rather high
compared with T-values generated under the model and, hence, that the model does not
adequately fit to the data with regard to the statistic T.
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