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On the basis of a meta-analysis of pairwise correlations between working memory tasks and cognitive
ability measures, P. L. Ackerman, M. E. Beier, and M. O. Boyle (2005) claimed that working memory
capacity (WMC) shares less than 25% of its variance with general intelligence (g) and with reasoning
ability. In this comment, the authors argue that this is an underestimation because of several method-
ological shortcomings and biases. A reanalysis of the data reported in Ackerman et al. using the correct
statistical procedures demonstrates that g and WMC are very highly correlated. On a conceptual level,
the authors point out that WMC should be regarded as an explanatory construct for intellectual abilities.
Theories of working memory do not claim that WMC is isomorphic with intelligence factors but that it
is a very strong predictor of reasoning ability and also predicts general fluid intelligence and g.

Ackerman, Beier, and Boyle (2005) are to be applauded for their
heroic effort in bringing together the large set of findings on
correlations between measures of working memory capacity
(WMC) and cognitive ability tests. We believe, however, that their
analysis and interpretation of these findings is partly flawed and
partly biased. More important, we feel that their article reflects a
misunderstanding of the theoretical meaning of correlations be-
tween current measures of WMC and intelligence tests or other
ability tests. In our commentary, we first point out methodological
problems with the meta-analysis of Ackerman et al. In the second
part of this comment we discuss the theoretical role of that relation
in the context of attempts to understand the nature of intelligence.

Methodological Issues: What Is the Correlation Between
WMC and Intelligence?

The goal of Ackerman et al.’s (2005) meta-analysis was to
arrive at estimates of the correlations between the WMC construct
and various cognitive ability constructs. It is clear from their
writing that they were intent on downplaying these correlations.
We show that their procedure involves factors that bias the esti-

mated correlations downward and results in confidence intervals
that are too narrow.

Task Selection

One such factor is the selection of tasks to represent WMC. The
inclusion criteria Ackerman et al. (2005) used are unclear. The text
suggests that working memory (WM) tasks are dual-task para-
digms that combine a short-term storage task with a processing
task. The list in the Appendix of their article, however, includes
tasks that do not match this description (e.g., random generation,
Star Counting Test). It appears as if Ackerman et al. have included
every task that the original authors have labeled a WM task. There
is probably no other impartial selection criterion, so Ackerman et
al. arguably had no choice but to select tasks by their labels. The
consequence, however, is that the meta-analysis ignores the
progress in honing the construct WMC over the last 2 decades. For
example, work by our group (Oberauer, Süß, Schulze, Wilhelm, &
Wittmann, 2000) included random generation and the Star Count-
ing Test in one study to test their construct validity. It turned out
that these two tasks were questionable indicators of WMC—
random generation shared little variance with other WM tasks, and
the Star Counting Test loaded on a separate factor that reflected a
mixture of executive functions (i.e., supervision of basic pro-
cesses) and processing speed. Later research confirmed that exec-
utive functions form one or several factors that are not strongly
related to measures of WMC (Oberauer, Süß, Wilhelm, & Witt-
mann, 2003). Moreover, we learned that factors reflecting WMC
were excellent predictors of reasoning ability, whereas the factor
reflecting speed and executive functions was a good predictor of
psychometric speed but not reasoning (Süß, Oberauer, Wittmann,
Wilhelm, & Schulze, 2002). Hence, we have a more refined
picture now of WMC as a construct, so that in retrospect we have
reasons to exclude tasks that do not adequately measure the con-
struct, in particular tasks designed to measure executive functions.
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Heinz-Martin Süß, Department of Psychology, University of Magdeburg,
Magdeburg, Germany.

This work was in part supported by Deutsche Forschungsgemeinschaft
Grant OB 121/3-3.

Correspondence concerning this article should be addressed to Klaus
Oberauer, University of Potsdam, Allgemeine Psychologie I, PO Box 60 15
53, 14415 Potsdam, Germany. E-mail: ko@rz.uni-potsdam.de

Psychological Bulletin Copyright 2005 by the American Psychological Association
2005, Vol. 131, No. 1, 61–65 0033-2909/05/$12.00 DOI: 10.1037/0033-2909.131.1.61

61



By including such tasks in the meta-analysis, Ackerman et al.
biased their estimate of the correlation of WMC and reasoning
downward and their estimate of the correlation of WMC and speed
upward.

Meta-Analysis

A second set of problems arises with the model and procedures
used to conduct the meta-analysis. Ackerman et al. (2005) as-
sumed a fixed-effects model. The assumption made by choosing
this model is that all synthesized studies estimate the same con-
stant correlation in the universe of studies. This assumption is
highly questionable in general (National Research Council, 1992),
and in particular for the given situation. As we discuss in the next
section, the various WM tasks differ in the composition of sources
of variance they reflect. Hence, their correlations with ability tests
are heterogeneous in the universe of studies. In addition, the
samples of participants come from different populations, and other
study characteristics probably add to the heterogeneity of effect
sizes. A random-effects model would have been much more ade-
quate for this situation. The consequences of using a fixed-effects
model when a random-effects model would be correct are mani-
fold (for an overview, see Schulze, 2004). Although it is unlikely
that the mean effect size estimates reported by Ackerman et al. are
biased because of the use of fixed-effects model procedures, the
confidence intervals are too narrow when heterogeneity prevails in
the universe of studies (cf. Hedges & Vevea, 1998; Schulze, 2004).
In addition, the confidence interval widths are also underestimated
because the procedure used to estimate them does not take the
correction for attenuation into account. Confidence intervals for
corrected correlations are larger than those for uncorrected corre-
lations (Hunter & Schmidt, 1990). As a consequence, some con-
clusions drawn by Ackerman et al. based on nonoverlapping
confidence intervals might have been different when using appro-
priate methods. For example, the average correlation between
elementary cognitive task and WM tests might not significantly
exceed the average correlation between WM tests and general
intelligence (g) measures.

Unwanted Variance and Task Specificity

Another problem leading to an underestimation of the correla-
tion between WMC and cognitive abilities is that no single task
used to measure WMC is a pure indicator. WM tasks arguably
reflect a mix of at least four sources of systematic variance: (a)
variance of the construct WMC, (b) variance specific to the task
paradigm (e.g., dual tasks of storage and processing, running
memory task, short-term recognition task, relational integration
tasks), (c) content-related variance, and (d) method variance (e.g.,
computer-based assessment, time limits of administration). The
latter three are unwanted sources of variance that usually diminish
the measured correlation with criterion variables (i.e., if they do
not affect the criterion variable as well). Because they are system-
atic sources of variance, their effect is not corrected by the cor-
rection for attenuation that Ackerman et al. (2005) applied.

One way to limit the impact of unwanted variance is to assess
WMC with a battery of tasks selected to balance different task
paradigms, contents, and methods, ideally approaching represen-
tative coverage of the universe of possible WMC tests. Under these

conditions, unwanted variance can be averaged out through aggre-
gation. There are a few studies in the literature that come relatively
close to that goal (Kane et al., 2004; Kyllonen, 1994; Süß, Ober-
auer, Wilhelm, & Wittmann, 2000; Süß et al., 2002). It is inter-
esting to note that in three of these four studies WM factors
accounted for considerably more variance in reasoning ability or
general fluid intelligence (gf) than estimated by Ackerman et al.
(2005; the exception being Kane et al., 2004, who used only
storage-and-processing tasks to measure WMC). In a reanalysis of
the two studies by Süß et al. (2000, 2002), Oberauer, Süß, Wil-
helm, and Sander (in press) demonstrated how the correlation
obtained between measures of WMC on the one side, reasoning
and general intelligence on the other side increased as the level of
aggregation on the WMC side was increased. Individual tasks such
as reading span or computation span had correlations with the
intelligence scales in the range reported by Ackerman et al. (rs �
.24 to .64). At a first level of aggregation Oberauer et al. (in press)
formed composites of tasks measuring the same WM function
(simultaneous storage and processing or relational integration)
with the same content (verbal–numerical or spatial). These com-
posites had correlations with intelligence ranging from .50 to .69.
At a second level of aggregation, the authors built a single WMC
composite representing both functions and both content domains.
This composite correlated with intelligence scales .69 to .77.

Ackerman et al. (2005) are aware of the merits of aggregation,
but they largely disregarded it in their assessment of the correlation
between WMC and intellectual abilities, which they based largely
on estimates of correlations between individual WM tasks and
ability test scores. Whereas the hypothesis they intended to test
was formulated on the level of constructs, their data analysis
focused on the level of individual indicators and thereby fell short
of testing the hypothesis.

Structural Equation Models

A more sophisticated procedure than using aggregation of indi-
cators is the application of structural equation modeling (SEM). It
can be used to estimate the strength of relationship between latent
variables that assumedly represent the constructs of interest. Latent
variables (e.g., WMC and gf) figure as causes to explain the
covariances between their indicators (WM tasks and ability test
scores). Having covariances between all indicators available and
attending to certain restrictions when applying SEM enables the
estimation of the latent variables’ relationship.

Ackerman et al. (2005) attempted to apply this approach to a
subset of uncorrected correlation estimates from their meta-
analysis. They seemed to be aware of some serious statistical
problems with such an analysis, but they conducted their analyses
in a way that disregards one of these problems, one which is highly
relevant when using correlation matrices as data input for SEM.
The standard procedures (and software) for SEM are designed for
application to covariance matrices, not correlation matrices. Un-
less so-called scale-invariant models and scale-free parameters are
used, omnibus test statistics, fit indices, as well as parameter
estimates and their standard errors, may be severely biased (Cud-
eck, 1989) when correlation matrices are modeled. The critical test
of the hypothesis that WMC and g are isomorphic constructs is the
model in Ackerman et al.’s Figure 2. They chose to fix the
loadings of the indicators in that model on the basis of their
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loadings in a different model. Apart from being theoretically
unjustified, this decision has the consequence that the model is not
scale invariant.

We therefore reanalyzed the data in Ackerman et al.’s (2005)
Table 4, fitting their model with unconstrained factor loadings and
using software implementing a constrained estimation algorithm to
properly analyze correlation matrices.1 In addition, we changed the
correlation between the WMC and the g factor into a unidirectional
path, reflecting our conceptual stance discussed below (in this
model, the standardized parameter estimate is identical to the
correlation between the latent variables). The model is depicted in
Figure 1. The fit indices are as follows: �2(76, N � 114) �
114.218, p � .003; normed fit index � .82, comparative fit
index � .93, root-mean-square error of approximation � .057,
90% confidence interval � .025, .083.

The model resulted in a substantially higher estimated correla-
tion between WMC and g than that reported by Ackerman et al.
(2005; r � .85, as opposed to r � .50). The variance of the
disturbance term shows that the WMC factor does not account for
all the variance in the g factor. Hence, we might conclude—setting
aside the above mentioned caveats for such analyses—that WMC
and g share the largest part of their variance (72%) but are not
identical. This result converges closely with previous studies based
on SEM (Kane et al., 2004; Kyllonen & Christal, 1990; Süß et al.,
2002). We also reanalyzed the model relating g and short-term

memory (Ackerman et al.’s, 2005, Figure 4) with free loadings.
The path coefficient was .48, very close to Ackerman et al.’s
estimate. The reanalysis therefore also resolves the conflict be-
tween Ackerman et al.’s synthesis of correlations, which con-
firmed that WM tasks are better predictors of intellectual abilities
than short-term memory tasks, and their SEM, which did not
reflect that difference.

Our methodological critique notwithstanding, we believe that
Ackerman et al. (2005) are right in claiming that WMC is not the
same as g or as gf or as reasoning ability. Our argument for a
distinction between these constructs does not hinge on the size of
the correlation but on a qualitative difference: On the side of
intelligence, there is a clear factorial distinction between verbal
and numerical abilities (e.g., Süß et al., 2002); on the side of
WMC, tasks with verbal contents and tasks with numerical con-
tents invariably load on the same factor (Kyllonen & Christal,
1990; Oberauer et al., 2000). This mismatch between WMC and
intelligence constructs not only reveals that they must not be
identified but also provides a hint as to what makes them different.
We think that verbal reasoning differs from numerical reasoning in
terms of the knowledge structures on which they are based: Verbal
reasoning involves syntax and semantic relations between natural
concepts, whereas numerical reasoning involves knowledge of
mathematical concepts. WMC, in contrast, does not rely on con-
ceptual structures; it is a part of the architecture that provides
cognitive functions independent of the knowledge to which they
are applied. Tasks used to measure WMC reflect this assumption
in that researchers minimize their demand on knowledge, although
they are bound to never fully succeed in that regard. Still, the
minimization works well enough to allow verbal and numerical
WM tasks to load substantially on a common factor. This suggests
that WMC tests come closer to measuring a feature of the cogni-
tive architecture than do intelligence tests.

1 We have used the module SEPATH included in the STATISTICA
software package (Version 6.1) for the reanalyses. We noted two oddities
in the data reported by Ackerman et al. (2005). First, the submatrices for
the correlations between the intelligence tests differ between Tables 4 and
6. For example, the correlation between Spatial Intelligence and Knowl-
edge was imputed in Table 4 (r � .236) but was seemingly based on
available data in Table 6 (r � .430). Despite such discrepancies, we used
the values in Table 4 as reported to maintain comparability. Second, we
note that the harmonic mean of the sample size (N � 456) is much larger
than the arithmetic mean for the total sample of studies (N � 114). It is
easy to prove that the harmonic mean must be smaller than the arithmetic
mean for positive values, as is the case for sample sizes. Because the
sample sizes reported by Ackerman et al. for the various meta-analytic
results suggest that the arithmetic mean of 114 is the more adequate value,
and because the choice of which type of mean one uses for the SEM
analyses does not affect the parameter estimates, the fit indices for our
reanalyses reported in the text are based on an N of 114. The fit indices in
which N equals 456 are as follows: �2(76) � 459.905, p � .001; normed
fit index � .82, comparative fit index � .85, root-mean-square error of
approximation � .100, 90% confidence interval � .090, .109. Allowing
correlated errors, as Ackerman et al. did, improved the fit and slightly
increased the path from WMC to g.

Figure 1. Reanalysis of the structural equation model in Figure 2 of
Ackerman et al. (2005), based on their Table 4, with free loadings. The
parameter estimates are given for the standardized solution in which
constrained estimation forces endogenous latent variables to have vari-
ances of one. WM � working memory; d � the disturbance term; e �
error.
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Conceptual Issues: What Is the Relation Between WMC
and Intelligence?

Ackerman et al. (2005) treated WMC as one more beast in the
zoo of ability constructs. They were content with giving it its place
in the three-stratum theory of Carroll—with an inclination toward
relegating it into the rank and file, together with lower level
constructs such as psychometric speed. We think that this reflects
a misunderstanding of why most researchers are interested in the
correlation between WMC and intelligence. The aim of that re-
search is to validate WMC as an explanatory construct for intel-
lectual abilities. The psychometric ability constructs have been
derived largely inductively, reflecting the common variance
among tests that have been constructed as diagnostic tools for
aspects of mental abilities as described in everyday language. In
contrast, WMC is a construct that derives deductively from theo-
ries of the cognitive architecture in which a limited-capacity WM
plays a central role, although not always under the same name
(Anderson & Lebiere, 1998; Atkinson & Shiffrin, 1968, to cite just
the most prominent ones). These theories assign short-term mem-
ory or WM a crucial role for complex tasks such as reasoning and
text comprehension. The search for correlations between measures
of short-term memory (e.g., Perfetti & Goldman, 1976), and later
of WM (Case, Kurland, & Goldberg, 1982; Daneman & Carpenter,
1980), and standardized ability and achievement tests has been
undertaken as a test of these theories. The prediction to test was
that measures of WMC should substantially correlate with the
criterion tests, not that they should be perfectly correlated. Occa-
sionally, researchers have been impressed by the size of the cor-
relations obtained, and some have gone as far as speculating that
WMC accounts for all the systematic variance in g, as the citations
gathered by Ackerman et al. document. The scarcity of citations
claiming that WMC and g (or gf) are identical underscores that this
is not a commonly held assumption.

From a theoretical point of view, there is no reason to assume
that WMC is the same as g. By definition, g is conceptually
opaque—it is the common variance of a set of tasks that happened
to be constructed and used by intelligence researchers over a
century. It reflects no explicit theoretical concept, and hence there
is no theory-based procedure for measuring it. Rather, g reflects a
mixture of the mostly implicit theories of intelligence various
researchers have endorsed and their intuitions about ways to test it.
It would be a surprise and an embarrassment if one found that
measures of WMC and measures of g were perfectly correlated. It
would imply that measures of WMC do not come closer to mea-
suring a theoretically well-defined parameter of the cognitive
system than g does.

By treating WMC as another primary factor in the ability
hierarchy, Ackerman et al. (2005) ignore its theoretical back-
ground. WMC is a construct that bridges the gap between research
on individual differences in abilities and cognitive science, includ-
ing experimental cognitive psychology and formal modeling of
cognitive processes. The tasks used to measure WMC have been
constructed to operationalize processes postulated in theories of
WM, and although these theories are admittedly still in their
infancy, they provide some guidance as to what features a good
WM task should have. More important, the link between theory
and measurement implies that the theory can be tested through
construct validation of the tests (Oberauer, in press). Investigating

the correlates of WM tests is one aspect of construct validation;
these efforts are complemented by experimental investigations,
investigations of neural processes, and formal modeling. A wealth
of experimental findings informs about the processes going on in
the most popular WM tasks (e.g., LaPointe & Engle, 1990; Saito
& Miyake, 2004), and neuroimaging studies unravel the networks
involved in these processes (Curtis & D’Esposito, 2003). More-
over, there are encouraging attempts to develop formal models of
the capacity limit of WM (Daily, Lovett, & Reder, 2001; Oberauer
& Kliegl, 2001). The field is still far from consensus about what
WM is and how it functions, but there are various competing
theories that make testable empirical claims (for an overview, see
Miyake & Shah, 1999). Nothing comparable can be said about g.

We want to understand intelligence, not only map its network of
correlations with other constructs. This means to reveal the func-
tional—and ultimately, the neural—mechanisms underlying intel-
ligent information processing. Among the theoretical constructs
within current theories of information processing, WMC is the one
parameter that correlates best with measures of reasoning ability,
and even with gf and g. Therefore, investigating WMC, and its
relationship with intelligence, is psychology’s best hope to date to
understand intelligence. Stopping short at searching for the place
of WMC among the factor hierarchy of ability constructs is like
being satisfied with a Linnéan taxonomy of creatures and refusing
to proceed toward explaining the origin of species.
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